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1 Particle Methods( Implicit or Explicit )

1. Deformation of liquid with free surface

Solve Navier-Stokes equation numerically
based on Lagrangian material variables

2. Particle Methods O 0 [

1 all Moving Particle Semi-implicit method (MPS)
O 0O 0O Semi-Implicit

[ b0 Smoothed Particle Hydrodynamics (SPH)
1 O O Explicit



2 Implicit Method in Simulation

1. Thin and Flexible elastic bodies’ deformation
cloth, butterflie's wing, flower's petal etc. )

1 ald Stiffness operator and Damping operator are non-linear
[J bl Linearize the evolution equation by Frechet derivatives
[0 cO Solve Resolvent equation at each time

" Implicit Method ”

2. Yosida Approximation for Evolution Equations

Mathematical Theory which verifies
Implicit Method in Numerical Simulations



3 Elastic bodies’ deformation

Elastic bodies’ deformation is described
by this evolution equation

% ( 58 > i ( K(u(t)_)vJEt)L (v(t)) ) = ( f?t) )(1)

u(t,z) O displacement at each position x
v(t,x) O velocity at each position x
f(t,z) O external force at each position x

K (-) O stiffness operator which is non-linear
L(-) O damping operator which is non-linear



4 Discretize in small time interval At

The evolution equation is discretized into this
time difference equation by a small time interval At

Ait ( i: ) " ( K (u[n] +—AUI[LT)L]+_LA(5[H] T AY) )
= ( f[n0+ 1] ) ;

n=20,1,2,3,--- O discretized time
uln] =u(n At) , vln| =v(n At) , fln] = f(n At)
Au =uln+ 1] —uln| , Av =vn + 1] — v|n|



5 Taylor expansions of spatial operators

Taylor expansion of stiffness K (u) and damping L(v)
based on their Frechet derivatives 0K /0u and OL/0v

0K

K (uln] + Au) = K (ufn]) + 5[] & (3

L] +&0) = L) + Sofnl A (@
Kln) = K (uln]) , L[] = L (ufn)) (5)
0K (9K 0L 8L



6 Solve Resolvent equation at each time

Resolvent equation whose unknowns are (Au, Av)

o 7)o (ot g )} (a0)
:At( K~ £+ St ) "

Solve (Au, Av) from the above Resolvent equation.

Next displacement u|n + 1] and Next velocity v[n + 1]
Is computed by

uln + 1]

uln] + Au (8)
vn| + Av (9)

vn+ 1



{ Deformation of liquid with free surface

1. Splashing water, Breaking waves and so on are computed
by Moving Particle Semi-implicit method
(which was proposed by Prof. S.KOSHIZUKA et al. )
[Jald Time Evolution : Lagrangian material variable
[0 b0 Spatial Derivative : Eulerian space variable

2. The original MPS must be modified mathematically
[0 ald It does not converge to Navier-Stokes equation
[J b Temporal Pressure — Real Pressure



8 Navier-Stokes equation (Eulerian)

r = (x1,x2, --,xy) O Eulerian space variable, I = 2,3, ---
Navier-Stokes equation with free surface
I
D v(t, ) t,x 1 Op(t,x
4 — Z 2 (,2) =g
Dt — T; p(t,x) Ox
Du(t, a)
) (10

The equation of continuity from mass conservation

I

0 — (9,0tzv Z

(tx)p (1)
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9 Lagrangian material variable

We analyze Navier-Stokes equation based on
Lagrangian material variable.

Each liquid’s particle is expressed by an initial position

a= (a1, Qo, ---,oq)T at initial time t =0 .

Let U(t,Ck) — (ul (t,Ck), U'Q(ta@)a T ’LL[(t, a))T
be a position of the particle a = (a1, s, ---,CU)T
at time t > 0 .

Let U(t, CV) — (Ul(ty CV); UZ(ta&)a T Uf(ta a))T

be a velocity of the particle @ = (a7, aso, --°,OéI)T

at time ¢t > 0 .



10 State variables around each particle

Let u(t) = (u(t,a) ; a € A)
Let v(t) = (v(t,a) ; a € A)
u(t) expresses the liquid's shape at time ¢t > 0 .

e Let p(t,a) be mass density around the particle
a= (a1, as, -o-,oq)T at time t >0 .

e Let p(t, ) be pressure around the particle
a= (a1, as, ~~-,oq)T at time ¢t > 0 .

(p(t,a) 5 € A)
(p(t,a); € A)

Let p(t)
Let p(t)



11 Incompressibility Assumption

The mass density p(t, «) depends the volume expansion

Po

p(t,a) = (12)
det (8u§2a))
Assume that the flow is incompressible
ou(t, a)
1 = det 13
et (52 (13)

Then, the mass density p(t, ) become a constant pg

p(t, ) = po (14)



12 Lagrangian-Eulerian hybrid type

Navier-Stokes equation

Based on Lagrangian material variable, we obtain

thoz B toz 1 Op(t,a)
7;2: ou;(t, ) po Ou(t,a) 9(15)
Du(t,a)
T v(t, a) (16)
0 = nggo‘) - (L, oz)z gzgz; (17)
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13 Discretization by L particles

Lagrangian material variable is discretized by many particles
Ck[l] (l — 1,2,3,-°°,L — 5000) :

Let o) be a representative initial position (I = 1,2,---, L)
at initial time ¢t =0 .

Position u(t,a) (a € A) is discretized
as u(t,apy) (I=1,2,---,L) .

)
Velocity v(t,) (a € A) is discretized
as v(t,apy) (I=1,2,---,L).



14 Discretization of Laplacian by MPS

S o () = (18)
{¢(apw) — dlap) ) w (|U(ap) — Ulay)))
21 %;l S P
where
\_ | Ulap) Ulay)|” w (|U(ag) = Ulag)])




15 Discretization of gradient by MPS

0
%(04[11)
_ i Qb(a[k]) — gb(a[l]) U(a[k]) — U(a[l]
PO G Ula) = Ulag)| |Ulaw) = Uloqp)|
w (|U(ep) — Ulap)|)
L0

Laplacian and gradient are discretized
by mutual operations between particles.



16 Time Discretization (explicit)

T = At : sampling time

t=nt (n=0,1,2,---: digital time )

Let U|n|(c) be an approximate value for u(nr, ) .
Let Vn|(«) be an approximate value for v(nt, a) .

Vin+1]—-Vin| u ! 0%V [n] 1 oP (20)
T N Lo p 8Uz[n]2 L0 oU "9




17 Temporal velocity V* and Temporal
position U”

Temporal velocity V* is computed only by viscosity term
ignoring pressure term

I
V*—Vin 0°Vn
i _a OV gy
T P0 P 5’Uz[n]
Temporal position U* is computed
from Temporal velocity V'*
U" —Ulnl _ s (24)

T



18 Modifiers V' and U’

Recover effect of pressure P* (unknown)
by modifiers V' and U’

Vin+1]=V*+V" Un+1=U*+U" (25)

Vi —1 OP*
M 2
T £0 GU* ( 6)
U’ ,
— =V (27)
Rho™(a) = Fo (28)




19 N-S eq. modified by pressure P*

By adding effects of modifiers V'’ and U’




20 Find temporal pressure P~

Considering modifier V'’ from effect of pressure P*

or* po
1 _ Fo
(=1) oU* T v

By taking inner product with 9/0U*

il oV
) Qg = Z U}

’I,Zl

(31)

(32)



21 Find temporal pressure P*

_DPr
0=—7-+po Z aU* (33)
_Dp oV V-’
_ Rho|n + ]—Rho I Rho" —TRho[n] (35)
T

sk a /
225* p za;



22 Find temporal pressure P~

Discretization of the equation of continuity

>1<

I
Rho™ — Rho]
O O Z (36)

Here, since Rho|n + 1] = pg ( incompressible assumption )

— Rho™ oV
O — /00 I /00 Z L (37)




23  Find temporal pressure P~

hus, we obtain

QVZ-’ Po — I{hO>I<
Po Z I+ = (—1) -

By substituting the above equation
into the following equation (32)

L 92pr oV
)2 g = ZaU*

zzl

we have

(38)

(39)



24 Poisson equation determines P~

I
0° P* — Rho™
YOy )
— oU; T
Thus, we obtain Poisson type equation
1 2 D* *
P — Rh

- 8Uz>|<2 7—2

By solving this PDE with B.C. from liquid’'s shape U* ,
we find temporal pressure P* .



25 Find next pressure Pn + 1]

Time Difference N-S eq. with temporal pressure P*

I
Vin+1]—=Vin] u 1 0P~
=2 - g (42
T Po Z:: po OU* 9(42)
Compute next pressure P|n + 1] which sutisfies
the following modified time difference N-S eq.
Vin+1] —V|n] Vn] 1 OPn—+1
| | _ Z E [ | - g
T o “— 90U |n| po OU [n + 1]

based on next velocity V|n 4+ 1] and position Un + 1] .



26  Modified N-S eq. with next V' and U

he approximate solutions V', U , P
from the time difference modified N-S eq.

Vin+1]-Vin] n 0°V[n] 1 0P[n+1]
T B %7; OU;[n]2  po OU[n+1] I

with next velocity V|n + 1| and next position U|n + 1]
may converge to the rigorous solutions v , u , p
of Lagrangian-Eulerian hybrid type N-S eq.

I
thoz v toz 1 Op(t, o)
_ M - g (4
00 Z i (1, a) po Ou(t, o) 9(43)

1=1



27 Smoothed Particle Hydrodynamics

Discretize Navier-Stokes equation

I
D v(t, ) t,x 1 Op(t,x
( _ Z 2 p(t, x) - g
Dt —~ 0] p(t,z) Oz
and the state equation
p(t,-) = F(p(t,")) (44)

by kernel functions

1. Explicit Method
2. Incompressibility does not follows strictly



28 Conclusions

1. Deformation of liquid with free surface
( Navier Stokes equation with Free Boundary )

2. Particle Method O 0 [
[ al0d MPS( Moving Particle Semi-implicit )- - -Semi-implicit
(0 b0 SPH( Smoothed Particle Hydrodynamics )- - -Explicit

3. Mathematical formulation of MPS
Lagrangian-Eulerian hybrid type Navier-Stokes equation

4. Moving Particle Semi-implicit method were modified.

1 ald Temporal Pressure - Real Pressure
1 b0 Approximate solution of modified MPS will converge to

rigorous solution of L-E hybrid type N-S eq.



29  Appendix

1000 Navier-Stokes OO0 OO0 O0O0O0O0OO0O0O0OO
1000 Lagrange DO OO OO
_agrange-Euler O O O Navier-Stokes 00 O [

thcu B i tcu 1 Op(t,a)
— Ju;(t, o) po Ou(t,a) 7

]

000 Moving Particle Semi-implicit 0000000 O
MPSOOOD ODODOO P*O

N-SOOD0O00D000 00 Pln+1] 0
000000000000



