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1 Particle Methods( Implicit or Explicit )

1. Deformation of liquid with free surface

Solve Navier-Stokes equation numerically

based on Lagrangian material variables

2. Particle Methods 粒子法
（a）Moving Particle Semi-implicit method (MPS)

・・・Semi-Implicit

（b）Smoothed Particle Hydrodynamics (SPH)

・・・Explicit



2 Implicit Method in Simulation

1. Thin and Flexible elastic bodies’ deformation

( cloth, butterflie’s wing, flower’s petal etc. )

（a）Stiffness operator and Damping operator are non-linear

（b）Linearize the evolution equation by Frechet derivatives

（c）Solve Resolvent equation at each time

” Implicit Method ”

2. Yosida Approximation for Evolution Equations

Mathematical Theory which verifies

Implicit Method in Numerical Simulations



3 Elastic bodies’ deformation
Elastic bodies’ deformation is described

by this evolution equation

d

dt

(
u(t)
v(t)

)
+

(
−v(t)

K (u(t)) + L (v(t))

)
=

(
0

f(t)

)
(1)

u(t, x) ： displacement at each position x

v(t, x) ： velocity at each position x

f(t, x) ： external force at each position x

K(·) ： stiffness operator which is non-linear

L(·) ： damping operator which is non-linear



4 Discretize in small time interval ∆t
The evolution equation is discretized into this

time difference equation by a small time interval ∆t

1
∆t

(
∆u
∆v

)
+

(
−v[n] − ∆v

K (u[n] + ∆u) + L (v[n] + ∆v)

)
=

(
0

f [n + 1]

)
(2)

n = 0, 1, 2, 3, · · · ： discretized time

u[n] = u(n ∆t) , v[n] = v(n ∆t) , f [n] = f(n ∆t)
∆u = u[n + 1] − u[n] , ∆v = v[n + 1] − v[n]



5 Taylor expansions of spatial operators

Taylor expansion of stiffness K(u) and damping L(v)
based on their Frechet derivatives ∂K/∂u and ∂L/∂v

K (u[n] + ∆u) = K (u[n]) +
∂K

∂u
[n] ∆u (3)

L (v[n] + ∆v) = L (v[n]) +
∂L

∂v
[n] ∆v (4)

K[n] = K (u[n]) , L[n] = L (v[n]) (5)

∂K

∂u
[n] =

∂K

∂u
(u[n]) ,

∂L

∂v
[n] =

∂L

∂v
(v[n]) (6)



6 Solve Resolvent equation at each time

Resolvent equation whose unknowns are (∆u, ∆v){(
I O
O I

)
+ ∆t

(
O −I

∂K
∂u [n] ∂L

∂u [n]

)}(
∆u
∆v

)
= ∆t

(
v[n]

−K[n] − L[n] + f [n + 1]

)
(7)

Solve (∆u, ∆v) from the above Resolvent equation.

Next displacement u[n + 1] and Next velocity v[n + 1]
is computed by

u[n + 1] = u[n] + ∆u (8)

v[n + 1] = v[n] + ∆v (9)



7 Deformation of liquid with free surface

1. Splashing water, Breaking waves and so on are computed

by Moving Particle Semi-implicit method

(which was proposed by Prof. S.KOSHIZUKA et al. )

（a）Time Evolution : Lagrangian material variable

（b）Spatial Derivative : Eulerian space variable

2. The original MPS must be modified mathematically

（a）It does not converge to Navier-Stokes equation

（b）Temporal Pressure → Real Pressure



8 Navier-Stokes equation (Eulerian)

x = (x1, x2, · · · , xI) ： Eulerian space variable, I = 2, 3, · · ·
Navier-Stokes equation with free surface

D v(t, x)
Dt

=
µ

ρ(t, x)

I∑
i=1

∂2v(t, x)
∂x2

i

− 1
ρ(t, x)

∂p(t, x)
∂x

+ g

Du(t, α)
Dt

= v (t, u(t, α)) (10)

The equation of continuity from mass conservation

0 =
∂ρ(t, x)

∂t
+

I∑
i=1

∂

∂xi
{ρ(t, x)vi(t, x)} (11)





9 Lagrangian material variable

We analyze Navier-Stokes equation based on

Lagrangian material variable.

Each liquid’s particle is expressed by an initial position

α = (α1, α2, · · · , αI)
T at initial time t = 0 .

Let u(t, α) = (u1(t, α), u2(t, α), · · · , uI(t, α))T

be a position of the particle α = (α1, α2, · · · , αI)
T

at time t ≥ 0 .

Let v(t, α) = (v1(t, α), v2(t, α), · · · , vI(t, α))T

be a velocity of the particle α = (α1, α2, · · · , αI)
T

at time t ≥ 0 .



10 State variables around each particle

Let u(t) = (u(t, α) ; α ∈ Λ)
Let v(t) = (v(t, α) ; α ∈ Λ)
u(t) expresses the liquid’s shape at time t ≥ 0 .

• Let ρ(t, α) be mass density around the particle

α = (α1, α2, · · · , αI)
T at time t ≥ 0 .

• Let p(t, α) be pressure around the particle

α = (α1, α2, · · · , αI)
T at time t ≥ 0 .

Let ρ(t) = (ρ(t, α) ; α ∈ Λ)
Let p(t) = (p(t, α);α ∈ Λ)



11 Incompressibility Assumption

The mass density ρ(t, α) depends the volume expansion

ρ(t, α) =
ρ0

det
(

∂u(t,α)
∂α

) (12)

Assume that the flow is incompressible

1 = det
(

∂u(t, α)
∂α

)
(13)

Then, the mass density ρ(t, α) become a constant ρ0

ρ(t, α) = ρ0 (14)



12 Lagrangian-Eulerian hybrid type

Navier-Stokes equation

Based on Lagrangian material variable, we obtain

D v(t, α)
Dt

=
µ

ρ0

I∑
i=1

∂2v(t, α)
∂ui(t, α)2

− 1
ρ0

∂p(t, α)
∂u(t, α)

+ g (15)

Du(t, α)
Dt

= v(t, α) (16)

0 =
Dρ(t, α)

Dt
+ ρ(t, α)

I∑
i=1

∂vi(t, α)
∂ui(t, α)

(17)





13 Discretization by L particles

Lagrangian material variable is discretized by many particles

α[l] (l = 1, 2, 3, · · · , L = 5000) .

Let α[l] be a representative initial position (l = 1, 2, · · · , L)
at initial time t = 0 .

Position u(t, α) (α ∈ Λ) is discretized

as u(t, α[l]) (l = 1, 2, · · · , L) .

Velocity v(t, α) (α ∈ Λ) is discretized

as v(t, α[l]) (l = 1, 2, · · · , L) .



14 Discretization of Laplacian by MPS

I∑
i=1

∂2φ

∂U2
i

(α[l]) = (18)

2I
∑
k 6=l

{
φ(α[k]) − φ(α[l])

}
λ

w
(∣∣U(α[k]) − U(α[l])

∣∣)
ρ0

where

λ =

∑
k 6=l

∣∣U(α[k]) − U(α[l])
∣∣2 w

(∣∣U(α[k]) − U(α[l])
∣∣)∑

k 6=l w
(∣∣U(α[k]) − U(α[l])

∣∣)



15 Discretization of gradient by MPS

∂φ

∂U
(α[l]) (19)

=
I

ρ0

∑
k 6=l

φ(α[k]) − φ(α[l])∣∣U(α[k]) − U(α[l])
∣∣ U(α[k]) − U(α[l])∣∣U(α[k]) − U(α[l])

∣∣
w

(∣∣U(α[k]) − U(α[l])
∣∣)

ρ0

Laplacian and gradient are discretized

by mutual operations between particles.



16 Time Discretization (explicit)

τ = ∆t : sampling time

t = nτ ( n = 0, 1, 2, · · · : digital time )

Let U [n](α) be an approximate value for u(nτ, α) .

Let V [n](α) be an approximate value for v(nτ, α) .

V [n + 1] − V [n]
τ

=
µ

ρ0

I∑
i=1

∂2V [n]
∂Ui[n]2

− 1
ρ0

∂P

∂U
+ g (20)

U [n + 1] − U [n]
τ

= V (21)

Rho[n] = ρ0 (22)



17 Temporal velocity V ∗ and Temporal

position U ∗

Temporal velocity V ∗ is computed only by viscosity term

ignoring pressure term

V ∗ − V [n]
τ

=
µ

ρ0

I∑
i=1

∂2V [n]
∂Ui[n]2

+ g (23)

Temporal position U∗ is computed

from Temporal velocity V ∗

U∗ − U [n]
τ

= V ∗ (24)



18 Modifiers V ′ and U ′

Recover effect of pressure P ∗ (unknown)

by modifiers V ′ and U ′

V [n + 1] = V ∗ + V ′ U [n + 1] = U∗ + U ′ (25)

V ′

τ
=

−1
ρ0

∂P ∗

∂U∗ (26)

U ′

τ
= V ′ (27)

Rho∗(α) =
ρ0

det
(

∂U∗(α)
∂α

) (28)



19 N-S eq. modified by pressure P ∗

By adding effects of modifiers V ′ and U ′

V [n + 1] − V [n]
τ

=
µ

ρ0

I∑
i=1

∂2V [n]
∂Ui[n]2

− 1
ρ0

∂P ∗

∂U∗ + g (29)

U [n + 1] − U [n]
τ

= V [n + 1] (30)



20 Find temporal pressure P ∗

Considering modifier V ′ from effect of pressure P ∗

(−1)
∂P ∗

∂U∗ =
ρ0

τ
V ′ (31)

By taking inner product with ∂/∂U∗

(− τ)
I∑

i=1

∂2P ∗

∂U∗
i

2 = ρ0

I∑
i=1

∂V ′
i

∂U∗
i

(32)



21 Find temporal pressure P ∗

0 =
Dρ

Dt
+ ρ0

I∑
i=1

∂Vi[n + 1]
∂U∗

i

(33)

=
Dρ

Dt
+ ρ0

I∑
i=1

(
∂V ∗

i

∂U∗
i

+
∂V ′

i

∂U∗
i

)
(34)

=
Rho[n + 1] − Rho∗

τ
+

Rho∗ − Rho[n]
τ

(35)

+ρ0

I∑
i=1

∂V ∗
i

∂U∗
i

+ ρ0

I∑
i=1

∂V ′
i

∂U∗
i



22 Find temporal pressure P ∗

Discretization of the equation of continuity

Rho∗ − Rho[n]
τ

+
I∑

i=1

∂V ∗
i

∂U∗
i

= 0 (36)

Here, since Rho[n + 1] = ρ0 ( incompressible assumption )

0 =
ρ0 − Rho∗

τ
+ ρ0

I∑
i=1

∂V ′
i

∂U∗
i

(37)



23 Find temporal pressure P ∗

Thus, we obtain

ρ0

I∑
i=1

∂V ′
i

∂U∗
i

= (−1)
ρ0 − Rho∗

τ
(38)

By substituting the above equation

into the following equation (32)

(− τ)
I∑

i=1

∂2P ∗

∂U∗
i

2 = ρ0

I∑
i=1

∂V ′
i

∂U∗
i

(39)

we have



24 Poisson equation determines P ∗

(− τ)
I∑

i=1

∂2P ∗

∂U∗
i

2 = (−1)
ρ0 − Rho∗

τ
(40)

Thus, we obtain Poisson type equation

I∑
i=1

∂2P ∗

∂U∗
i

2 =
ρ0 − Rho∗

τ2
(41)

By solving this PDE with B.C. from liquid’s shape U∗ ,

we find temporal pressure P ∗ .



25 Find next pressure P [n + 1]

Time Difference N-S eq. with temporal pressure P ∗

V [n + 1] − V [n]
τ

=
µ

ρ0

I∑
i=1

∂2V [n]
∂Ui[n]2

− 1
ρ0

∂P ∗

∂U∗ + g (42)

Compute next pressure P [n + 1] which sutisfies

the following modified time difference N-S eq.

V [n + 1] − V [n]
τ

=
µ

ρ0

I∑
i=1

∂2V [n]
∂Ui[n]2

− 1
ρ0

∂P [n + 1]
∂U [n + 1]

+ g

based on next velocity V [n + 1] and position U [n + 1] .



26 Modified N-S eq. with next V and U

The approximate solutions V , U , P

from the time difference modified N-S eq.

V [n + 1] − V [n]
τ

=
µ

ρ0

I∑
i=1

∂2V [n]
∂Ui[n]2

− 1
ρ0

∂P [n + 1]
∂U [n + 1]

+ g

with next velocity V [n + 1] and next position U [n + 1]
may converge to the rigorous solutions v , u , p

of Lagrangian-Eulerian hybrid type N-S eq.

D v(t, α)
Dt

=
µ

ρ0

I∑
i=1

∂2v(t, α)
∂ui(t, α)2

− 1
ρ0

∂p(t, α)
∂u(t, α)

+ g (43)



27 Smoothed Particle Hydrodynamics

Discretize Navier-Stokes equation

D v(t, x)
Dt

=
µ

ρ(t, x)

I∑
i=1

∂2v(t, x)
∂x2

i

− 1
ρ(t, x)

∂p(t, x)
∂x

+ g

and the state equation

p(t, ·) = F (ρ(t, ·)) (44)

by kernel functions

1. Explicit Method

2. Incompressibility does not follows strictly



28 Conclusions
1. Deformation of liquid with free surface

( Navier Stokes equation with Free Boundary )

2. Particle Method 粒子法
（a）MPS( Moving Particle Semi-implicit )· · ·Semi-implicit

（b）SPH( Smoothed Particle Hydrodynamics )· · ·Explicit

3. Mathematical formulation of MPS

Lagrangian-Eulerian hybrid type Navier-Stokes equation

4. Moving Particle Semi-implicit method were modified.

（a）Temporal Pressure → Real Pressure

（b）Approximate solution of modified MPS will converge to

rigorous solution of L-E hybrid type N-S eq.



29 Appendix

自由境界 Navier-Stokes 方程式の数値解析において
流体粒子 Lagrange 座標に基づく
Lagrange-Euler 混合型 Navier-Stokes 方程式

D v(t, α)
Dt

=
µ

ρ0

I∑
i=1

∂2v(t, α)
∂ui(t, α)2

− 1
ρ0

∂p(t, α)
∂u(t, α)

+ g

へ
粒子法 Moving Particle Semi-implicit が収束するよう、
MPS における 仮の圧力 P ∗ を
N-S 方程式に適合する 圧力 P [n + 1] に
計算し直す事を提案した。


