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1. Navier-Stokes equations

R3: 3-D Euclidean space, x = (z1,x2,23), t > 0: time

u(x,t) = (uq(x,t),us(x,t),usz(x,t)) velocity vector,

p = p(x,t) pressure
D o 0 o0
= -V = Lagrange differentiation
Dot 6t+];1u]83:] Jrang
(N-S)
Du

1
o —vAu—-Vp, z€R3t>0 (momentum conservation)
P

divu=0, ze€R3t>0. (mass conservation)

2 3. Hu.
j=1 073 Ox1 Oxp Ox3 =1 oz

v.kKinematic viscosity, p:density, Assume that v =p = 1.

(1)  wu(x,0) =a(x) = (a1(x),ar>(x),a3(x)) (initial data)



Cauchy Problem. For any given a find a pair {u,p} of func-
tions satisfying (N-S) for ¢t > 0 with (1) at t = 0.

(i) Oexistence of local solutionsdd For a = a(xz), dose (N-S)
have a solution {u(z,t), p(x,t)} on (z,t) € R3x [0,T) for some
1T > 00

(ii) O uniqueness & regularity of solutionslIs the solution unique?
Is the solution infinitely many times differentiable with respect
to (z,t) e R3x [0,7) O

(iii) O continuity of solutions for initial datal Suppose that
{v,q} is another solution of (N-S) for the initial data b(x).
If a = b on R3, then {u,p} =~ {v,q} on R3 x [0,T)7

(iv) (global solution) In (i), (ii) and (iii) can one take T'= 00 7



If (i), (ii) and (iii) are affirmative for 3T < oo, then we say that
the Cauchy problem to (N-S) is locally well-posed.

If (i), (ii) and (iii) are affirmative for T' = oo, then we say that
the Cauchy problem to (N-S) is globally well-posed.

Millennium Prize Problem by Clay Math. Inst.
2000

Is (N-S) globally well-posed 7
If Yes !

— You will get

$1,000,000 = 90,910,000LC
120100 60180 9017000)



Solutions to linear PDE

1. Poisson equation

1
—Av=f, z€R’ G(z)=—a|”
7T

v(@) = [ Gl—niWdy = [ Gla—y)f@)dyidyadys
gives a solution formula.

2. Cauchy problem to the heat equation

%— Av=Ff zxeR3t>0, wv(z,0)=>b)
==
t
v(e,t) = [ T@—y0b@dy+ | [ M@=yt —r)fy,)dydr

3 =2

gives a solution formula, where I'(x,t) = (47t) 2e” 4



Solution to Nonlinear PbE — No solution formulal!
Method 1; Linear perturbation

(N-S) ~ perturbation from the linear Stokes equation

( 8’11, 3
— —Au+Vp=—u-Vu, x€R>t>DO0,

, ot
(N-S°) ! divu=0 zeR3t>0
| u(x,0) = a(x)

<0 (Duhamel principle)

(IE)
u(x,t) = /R3 I_(:c—y,t)a(y)dy—/ot /R3 E(x—y,t—7)u-Vu(y, 7)dydr,

H2
G(z — )M (y,t)dy, i,5j=1,2 3.
el RGO CDE

Eij(xz,t) =T (x,t)d;; +



successive approximation(iteration method)

WO () = [ M@=y, Da(y)dy,

. t : :
u(J_I_l)(m, t) = u(0) (z,t) — /O /]1%{3 E(x —y,t — T)u(]) : Vu(J)(y, T)dydT
(.] — 17 27 o )

existence of solution <~  wu(zx,t) =3 Iim u(j)(:r;,t)

J—0C

In general, only local solution can be constructed;

3T, < oo such that 3 lim v (z,t) for 0 <t < Ty

J—0C



Method 2; Variational principle

Energy conservation

(2) = /R3 Z

— > Z |az($)|2d$

3 3uz

(:13 T) d:I:dT

IR3

for all 0 <t < oo. (2) is called the energy equality of (N-S)-(1).
[

(2) = 3 weak solution u such that

max / Z lu;(x,t)

O<t<oo

3 (‘9uz

(:v T)

d:r;dT </ Z la;(z)|%dx

]R3

advantage: Ju(-,t) solution for all 0 < t < co (global solution)

disadvantage: smoothness of u is unknown!



Question: Can we control

t 3 3
3 // A, (z, )| 2dadr max/
) [y oo X 18P, e[, 5

by means of the initial data a 7

2
dx

(z,t)




2. EXxistence of global weak solution

Lg = {u= (uj,up,uz);divu=0 / Z |uz(:v)|2d:v < 00},
=1

3 (9uz

HY = {u= (ui,un,u3z) € L? / >

,Jl

(:v)

da:<oo}

3
uve L2 = (uv) = | 3. uie)vi@)ds
1=

a .
u,v € HU1 = (u,v) 1 = (u,v) + (Vu,Vv), Vu= ( uZ)
1,7=1,2,3
L2, H}: Hilbert spacesd H! c L2
PDE theory in functional analysis

solution u(az t) <= one parameter family of ¢ with its value in L2
and H}, i.



X: Hilbert space(Banach space)0wu: t € [0,T) — u(-,t) € X,
ODE=— X =R1 R3,..., finite dimensional vector space

PDE=— X = L2, H! ... infinite dimensional function space

|- ||x: the norm of X,

T
L0, T; X)={u:te (0,T) — u(t) € X;/O |u(t)||5dt < oo}, 1<s< o
L0, T;X)={u:te (0,T) —u(t) € X; sup |u(t)|x < oo}
te(0,T)
c™([0,T); X)
={u:te[0,T)— u(t) € X,m-times continuously differentiable;

m

d
sup ||=——=u(t)||x < oo}
tc[o,T) dt™



Definition 2.1. Let a € L2. A function u is a weak solution of
(N-S)—(1) on (0,T) if

(i) w € L>®(0,T; L2), Vu € L?(0,T; L?);

(ii) The identity

[, 220) + (Tu(®), O 0) + (u- Vu(t), @)}
= (0, ®(0))
holds for all ® € C1([0,T]; HL) with ®(.,T) = 0.

(u satisfies (N-S) in the sense of distribution.)



Theorem 2.1. (Leray) For arbitrary a € L2 there exists a weak
solution u of (N-S)—(1) on (0, oc0) such that

1 ¢ 1
(4) Su@®IZ2+ [ IVu()Zdr < Sluls)li32

for a.e. s >0, including s =0, and Vt such that 0 < s <t < 0.

(5) |lu(t) —all;2 — 0, ast— 40,

where |[u||;2 = /(u,u).

We solved Problem (i) for T' = oo by introducing the
notion of weak solutions.

Problem (ii) Is the weak solution u(z,t) in Theorem 2.1
unique ? Is u(xz,t) differentiable with respect to for (z,t) 7

partial answer: (4) guarantees smoothness of v to some extent.



Theorem 2.2. (Leray’s structure theorem)

Suppose that u is a weak solution of (N-S)—(1) on (0,00) with
the energy inequality (4):

1 t 1
(S.ED Sle@lFz+ [ IVu@Fadr < Sllus)li32
for a.e. s > 0, including s = 0, and V¢ such that 0 < s <t < 0.
Then 3{I;}72 4 a disjoint family of intervals on (0,c0) s.t.

(i) J7Tp > 0 such that Ig = [To,oo);

e 1
(ii) 1(0,00) \ UpZolx] =0 and O > |Ix]2 < oo;
k=1

(i) u(-,t) € C®(R3) for all t € I, (k=0,1,---),

where |I| denotes the length of the interval I.



Size of singular set in the space-time R3 x (0,T)

For a weak solution u we denote by S(u) the singular set defined
by

S(w) ={(z,t) e R3%x (0,T7); sup |u(y,s)| =00 for Vp> 0},
(y,s)€By(x,t)

where By(z,t) = {(y,s) € R® x (0,7); |y — z| < p, |s — t| < p}.

Theorem 2.3.(Caffarelli-Kohn-Nirenberg) V weak solution u with
the localized energy inequality

2
(L.E.L) 2//R3><(o,T) Vu|2pdzdt
< /L. oy 1P (@10 + 86) + (luf? + 2p)u - Vldadt
for all ¢ € C&(R3 x (0,T)) with ¢ > 0.

where H1(S) denotes the one-dimensional Hausdorff measure of
the set S in the space-time R3 x (0, o0).



Uniqueness and regularity of weak solutions

Theorem 2.4.(Serrin, von Wahl, Giga, Masuda, Sohr—K., Hishida-
Izumida, Neustupa, Eskauriaza-Seregin-Sverakd Let a € Lg. Let
v and v be two weak solutions of (N-S)—(1) on (0,7T). Suppose
that v satisfies the energy inequality (4) with s =0, i.e.,

1 2 t 2 L. 2

SOz + [ IVe(Dliedr < Sllal?2 0<t< T

Assume that « satisfies

(6) we L°(0, T; L") for 2/s+3/r=1 with 3= r = oo,

l.e.,
T
/O |lu(t)||5dt < oo for 2/s+3/r =1 with 3 < r < oo.
Then we have uw = v on R3 x (0,7T), and it holds

E) V'U,, v2u7 v .7vku7 e € C(R?) X (O7T))



Remark. Eskauriaza-Seregin-Sverak showed by contradiction
argument the crtical case s = oo and r = 3 :

we L®0,T; L3 = u@®t)eC®R>,0<Vt<T.

Problem. Direct proof of regularity result on weak solution in
the class L°°(0,T; L3)

Scaling invariance: X\ > O:parameter, a family {u),p)\} of func-
tions

ur(z,t) = Au(Az, A%t),  pr(z,t) = A2p(Az, A7t)

{u,p} is a solution of (N-S) on R3 x (0, ).
—

{uy, Pr}aso IS @ solution of (N-S) on R3 x (0, c0).



It is easy to check that

1

[urllsopoiiry = (/O (/R3|uA<x,t>|rda:>)rdt)

— )\1_(%_'_%) (/OOO (/R3 |u)\(a:,t)|rda:))% dt) )

1_(243
e )\ (5+T)||U||L3(O,OO,LT)

holds for all A > 0. This implies that the space (6)
L?(0,00; L") for 2/s+3/r=1 with 3 r =

is invariant under the change of scale such as uy(z,t) = Au(\z, \2t).

Importance!(Fujita-Kato principle) Find a solution « in a func-
tion space Y on R3 x (0,00) such as ||luy|ly = ||u|ly holds for all
A > 0.



Further results. Larger spaces for regularity of weak solutions

Let ¢ = (&) € CE(R3) be as
supp ¢ C{€ €R3;1/2<|¢] <2}, ¢(&) >0 for1/2< ¢ <2,
(7)Y ¢(27Fe)=1 fore#0

k=—o0

Define {¢g}rez(Littlewood-Paley functions) so that

or(&) = F tp(27M) = /R3 eEp(27ke)de, k=041,

3
(2m)2
0 By (7)) f € S can be expressed by

f= Y rxf (Littlewood-Paley decomposition of f).



Defintion.(Besov & Triebel-Lizorkin spaces Bj ., Fj )

: 00 q
Byy=1{f€sS'/P: llfl@;;( > (2k8|sok*f||Lp)q) < oo},
’ k—=—o0

s€R,1Sp=o00,1=q< o0,
B oo = {f €S'/Pi|Ifllps _ =sup (2% llp * fllzw) < oo},
p,eo ke
s€R,1=p= oo,
b
q

Frg={f €S'/Pilfllps = /Rg,( > (2’fssok*f<az>|)q) de| < oo},
’ k—=—0c0

seR,1Sp<o0,12qgS
Fgo,q ={fe S//P;
1fllps o= sup 1 53 (2% |y * f(2)|)da (Z<1OO}
Foo’q Q:dyadic |Q| Qk=—|092l(Q)
scR,1=g= o0



Proposition 2.5. (i) seR, 1Sp=00,152¢qg; Sgo S

—
S S S nk
Bpar € Bpga: g C Fpgo

(i) seR, 1 <p< oo

—
BpgCFrgCBpy 1<gSp<oo
Bg,pCinqCBzS?,q’ 1<p<g<oo
S — 178
Bpp = fpp-

(iii) s >0, 1 <p< @
—

Fyo=Hy={f € 8" |Ifllggy = I(~2)2fl|» < o0}

(iv) s=0,p=1,00 =
Fﬂz H!  Hardy space
{f € LE Mf(2) = suplur» f(@)| € L1}, win(e) = ¢ "0 (a/t)



BMO bounded mean oscillation

= {f €L lfllpmo = SUD |B|/ |f(x) — fpldx < oo}

=0
Foo,2

(v) (HD* = BMO

Coifman-Lions-Meyer-Semmes

u€W1’2=:>u-VuEH1

Theorem 2.7.(Taniuchi-K, Shimada-K) Let a € L2(R"). Let u
be a weak solution on (N-S)-(1). If

uw e L%(0,T; BMO), or
(8) welL’(0,T;F %) for2/s=1-awithOZa<l1

Then it holds that u € C®(R3 x (0,T))

Remark. L" C Foo3/r 3 <r < oo. Hence (8) covers the Serrin
class (6) except for r = 3.



Theorem 2.8.(Farwig-Sohr-Varnhorn) Let a € L2. The weak
solution u of (N-S)-(1) on (0,T) satisfies

uwe L°(0, T;L") for2/s+3/r=1 with3<r <o

if and only if a € Brat3/",



Local properties of weak solutions.

Removable singularity for 3-D harmonoic functions -

Let uw € C2(Bs(zg) \ {zo}) and Au = 0 in Bs(xzg) \ {zo}, where
Bs(zg) = {z € R3; |z — x| < 6}.

If
u(z) = o(jz —z0| ™) as z — =,

then there exists @ € C2(Bs(xzg)) with A% = 0 in Bgs(xzg) such
that a(x) = u(zx) for x € Bs(xg) \ {zo}.



Definition. Let v be a weak solution of (N-S) on R3 x (0,7).
(zo,to) € R3 x (0,T) : a regular point

<~

46 > 0, dJo > 0 s. t.

u € C%1(Bs(zg) x (to — 0,tg + 7).

Theorem 2.9. (K., Kim-K.) 3eg > 0 s.t if a weak solution u
satisfies at (zq,tg) € R3 x (0,7)

9 sup u(t 3 <e
(9) S O3 gy ey <

for 36 >0, do >0
=

(xo,tg) is a regular point.



: 3_ '
Here || ||L\3N(Ba(wo)) denotes the weak L>-norm, i.e.,

L.
i3 (Bs(ao)) = sup Ruf{z € Bs(xo); [u(z)| > R}3 (u; Lebesgue mea-

sure).

Example.
u(z) = egle — zo|7! == / lu(z)|Pdz = oo for all § > 0.
Bs(zo)

However, we have

4

Notice that the weak-norm || - ||;3 (Bs( cannot be small even
' W\ P4 0))
though we take the radius 6 small.



Corollary. (Removable Singularities) Jeg > 0 s. t. if (xg,tg) is
an isolated singular point of u satisfying

(10) limsup |z — xgl||lu(x, t)] < eq,

r—xo,t—10o

then (xqo,tg) is a regular point.

In particular, if uw behaves at (xqo,tg) like

(11) uw(z,t) = o(|lz —zg|™1) asz — zg

uniformly with respect to t in some neighbourhood of tg, then
(zo,tg) is a regular point.



3. Local existence of classical solution.

Under which initial data a can we construct the weak solution
of (N-S)-(1) with (6).

3|

L" = {u= (uy,uo,u3);

ullr = ([, le(@)'dz)" < oo}
L, = {ue€l";divu=0}
Theorem 3.1. [ Fujita-Kato, Kato, Giga, Giga-Miyakawal Let

3<r<ooandletaecL. Then there exist Tx > 0 and a unique
solution u of (N-S)—(1) on (0,T%) such that

(12) w € C([0,Ty); LT)
(13) %, Awu € C((0,Ty); L)

If in addition a € LT N L2, then u is also a weak solution of (N-
S)—(0.1) on (0,T%) with the energy equality (2) for 0 <t < Tk.

Remark. (i) By (12) we see that w(t) is a classical solution on
R3 x (0, T%).



(ii) Tx: time interval of local classical solution

C
(14) Ty = s— for 3 <r < oo,
lall 7

where C = C(r) is a constant independent of a.

lallpr < 1= Ts> 1,

(iii) Question: Can we represent T for a € L3 ?

Corollary 3.2.(global classical solution of small data) There
is § > 0 such that if a € L2 satisfies ||al|;3 < &, then we have in

Theorem 3.1 that Ty = .



Further results. (i) Local existence of strong solution for large

class of initial data: Cannone, Yamazaki-K, Sawada, Ogawa-
Taniuchi-K, Koch-Tataru

_143
X — BT,OO+T fOI’ 3 < T § OO,
X = VMO !=closure of 08?0 in BMO~! ~ F;;,lz
Ya € X

— IT% > 0 & FJu: solution of (N-S)—(1) with v € C([0,T%); X)

(ii) Uniqueness of strong solution for large class of initial data:
Miura

u e C([0,T): Fog}z) N L0, T; L)
—= u IS unique.



(iii) Tll-posedness in By l,: Bourgain-Pavlovic
V6 > 0, Ja € § with |[lal| ,-1 < and Ju: solution of (N-5)-(1) on

(0,6) such that |
Ju()ll 3-2 >1/6 for O <3t <é.

00,00

cf. Yoneda: Ill-posedness in Bp—’go for 2 < p <



Question.
(i) (continuation) u(t) € C°(R3) for t > Ty 7
or

(ii) (blow-up) ilTrﬂ |lu(t)||r =00 7

Consider the vorticity rot u = w = (w1, wo,w3), Where

__ Ouz  Oup __ Ouy Ous __ Oup  Oug

wy = — — —— — = — — - —

o 8:1:2 8:133’ 2= (9:133 8%1, 3T 89@1 (9332



Theorem 3.3. [0 Ogawa-Taniuchi-K.,Yatsu-K.OLet a € L], 3 <
r < oco. Suppose that u is a solution of (N-S)—(1) on (0,T%) with
(12) and (13). If

T
(15) | i@l g, dt <o, i=1,2,3,
or

T, |
(16) L i@ lpaodt < 00, i=1,2,

then there exists T/ > Ti such that w can be extended to the
solution on (0,7") of (N-S)—(1) as

9
(17) u, a—?, Au € C(0,T); LL).



Remarks. (i) Beale-Kato-Majda showed that if

T
(18) /O lwi(8) || poodt < 00, i=1,2,3,
then 37" > Ty such that (18) holds. Notice that

[wllgo < CllwllBymo < Cllwllpe,  lw|lLee = sup |w(z)l.
00,00 rER3

(ii) Vortex equation in R3

o,
8—6:—Aw—|—u-Vw—w-Vu=O
On the other hand, in R? for u = (u1,us) we have
0 0
w = gu2 941 : scalar function
orq1 Ox»
with
Oow

a—Aw—I—u-Vu}:O.

Maximum principle —

sup |lw(@®)||reorm2y < |[rot all;eorm2y.  (18) is always OK.
3P 11w g2y < 110t all o)



(iii) The criterion (15) holds also for the equation of perfect
fluids, i.e., the Euler equations.

8u 3
divu=0, ze€R3t>0.

Question. Does the criterion (16) holds also for (E) 7



5. Stability of solutions

5.1. Energy decay

Leray’s problem. Let u be a weak solution of (N-S). Is it true

|lu(t)||;2—0 ast—oo0?

Masuda :

Yweak solution u with

1 ¢ 1
(S.EL) Sle@lF2+ [ IvumliZadr < Slul)l32

for a.e. s > 0, including s =0, and Vt s.t. s<t< o0

p—

|lu(t)][;j2 =0 ast— oo .



Wiegner:

Let a € L2 and let u be a weak solution with (S.E.I)
that

lePallo = O@™®) as t — oco.
Then we have

O(t™3) if5/4<a< oo

dS — OQ.

Remark. Fujigaki-Miyakawa:

Va € L2  with /R3(1 + |z|)|a(z)|dx < oo

——

. Suppose

5
Ju: weak solution of (N-S)—(1) with |lu(t)|;2 = O(t 4) as t — oo



5.2. Stability of weak solutions in Serrin’s class

Assume that a € L2 and f € L2(0,T;L?) for all T > 0. We
consider a weak solution v of (N-S) with u|;—g = a and with the
external force f on the R.H.S:

(N-S)
ou - : 3
{ E_Au—ku-vu—l—Vp:f, divu=0 zxzeR’t>0,
u|t=O:a7

Then the stabilty of v can be reduced to find a global solution
v Oof the equation:

(N-S')
{ %_AU+U.VU+vq=f+f, divv=0, zeR3t>0,
V|t=0 = a + b,

where b and f denote perturbations of initial distubance and the
external force, respectively.



Theorem 5. (K.) Leta € L2, fe L1(0,00; L?) N LY0,00; L?)
for 4/3 < a < 2. Suppose that u is a weak solution of (N-S) in
the class

(19) we L°(0,00; L") for2/s+3/r=1 with 3 <r < oo,
Assume that b e L2, f € L1(0,00; L?) N C(0, 00; L?) with
lf Ol 2 =01 ast— oo

Assume also that the weak solution v of (N-S’) satisfies the en-
ergy inequality of the stronger form:

1 ¢ 1 t
(20) Zv@®32+ [ IIVol2dr < Slv()li32 + [ (F+ f,v)dr

for a.e. s > 0, including s = 0, and Vt s.t. s <t < oo. Then v

converges to u like

o —u(@®)||r = ot 2EP),  |Vo(t)—Vut)||r = o(t 2 1)73)

for2<r<oo ast— oo

Remark. In the above theorem, uw may not be small; we need
only that w belongs to the Serrin class (19). Moreover, the
perturbations b and f may be large.



EXxterior problems
4 Many Interesting Results

e.g, Flow past an obstacle:

ulgo =0, wu(x,t) —u™>™ € R3(#£ 0) as x| — oo

Finn, Masuda, Heywood, Kobayashi-Shibata, Enomoto-Shibata,
Shibata-Yamazaki:

Analysis of Oseen operator Lu = —P(Au + u*° - Vu)
41 Challenging Open Problems

e.g., Flow around a rotating obstacle:

ulgo =w xx, u(zx,t) -0 as |z —

(w: angular velocity) Galdi, Hishida, Geissert-Heck-Hieber, Farwig-
Hishida-Mduller, Farwig-Neustupa, Hishida-Shibata



