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More electrons attain on wall Wall is negatively charged.

and are absorbed.

Negative potential = Electrons are reflected & ions are accelerated.
= Flux of ions and electrons coincide at wall.
— It attains steady state.

T his stationary boundary layer is called sheath. I

Remark Density and potential are monotone.




Bohm’s Sheath Criterion

For sheath formation, physical observation requires
Bohm sheath criterion :

u?l > K+1, uy<O0. (BSC)

u4 : Ion’s velocity around sheath edge
K : Ion’'s temperature (V K: sonic velocity)

Remark (BSC) = Supersonic condition : uﬁ_ > K.

Justify Bohm'’s physical observation mathematically. I




2. Formulation of mathematical problem for R

Euler-Poisson equations (N = 1)

pt + (pu)z = 0, (E.a)
(pu)t + (pu2 + p(p))aC = poz, (E.b)
xx = P — Pe- (E.c)

reRy :=(0,00), t>0 : Space & Time variables

p=p(t,x) >0 . Ion density

u=u(t,x) € R . Ion velocity

o=0o(t,z) €R . Electrostatic potential x(—1)

p(p) =Kp (K >0) . Pressure (Isothermal)

pe=€e"?>0 . Electron density (Boltzmann relation)

[Chen, Introduction plasma physics, '77]
introduces the Euler-Poisson equations (E).



e Initial data

(p,u)(0, ) = (po, uo)(z), (I.a)

inf > 0, lim : = : : > 0, I.b
R po () Nim (po,uo)(x) = (py,uq), oy (1.b)

where P+, u4 are constants.

e Boundary data

¢(t,0) = ¢p, (B)

where ¢ is constant.

e Reference point of potential

im ¢(t,z) = 0. (R)

r—00

> To construct classical solution to (E.c), it is necessary that

py = 1. (A)



Definition

“Sheath” < monotone stationary solution with

u? > K+1, uy <0. (BSC)

Stationary problem

Stationary solution (p, @, @) is solution to (E) independent of t,

(5i)s = O, (S.2)
(552 +p(5)) = Fb (S.b)
o =p—e? (S.c)

with conditions (I.b), (B), (R), (A)

inf p(z) >0, lim (5,4,¢)(x) =(1,uy,0), &(0)= ¢
zeR | Z—00

Problem

1. When does stationary solution exist 7
2. Is sheath asymptotically stable 7




Related results on asymptotic analysis
(E) over bounded domain (0, 1)

Existence of stationary solution

e [A. Ambroso, F. Méhats, P.-A. Raviart, AA’01]
Existence of stationary solution is shown under (BSC).

Stability of stationary solution

e [A. Ambroso M3AS’'06]
Numerical result. Solution approaches stationary solution.

It is open problem to prove its stability. I




Existence of monotone stationary solution

~

(Fi)e =0, (p8*+Kp) =pdy Gya=p—c® (S)
with conditions

inf p(z) >0, lim (5,4,¢)(x) = (1,uy,0), ¢(0) = ¢y
r€R T—00

Derive conditions

. /OO (S.2)da, Iim (5,@)(x) = (1,uy) =

o /OO (S.b)/pdx, wli_>moo(ﬁ, u)(x) = (1,uy) =

_ w2 u?
=1G), I =Klogp+ %~

t 5= f~1(é) = scalar equation for &.



e Define inverse function f~1(g)

& For uy =0, f_1 — P/K
$ For uy # 0, define f~! by choosing blue branch.

Graph of f  Mach number M, = |uy|/VK. lim (p,¢) = (1,0).
r— 00

f(p)
f(p)
My f(p)
O O My 5 O ' p
(1,0) (1,0)
(i) O< My <1 (i) My =1 (4d3) 1 < My

e Substitute 7= f~1(&) in (S.c), /OO (S.c) X ¢, dx =

T2 __ oy N o — 5 —1 —n
5.2 =2V(d), V(@) = /O F ) — e dn,

V(¢) is called Sagdeev potential.



Necessary condition for existence
& ¢p must belong to image of f, that is,

dp > f(M).
& It is necessary that
V(gp) = 0.
Graph of V' Definew € (K+1,00) s.t. w = u%r < 0V (f(My)).
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Main result ... [M.S. to appear in KRM]

a D
Theorem 1 (Existence of monotone stationary solution)

i) Letuﬁ_gK orK—I—lzu?I_ or K+ 1< u?.
op > fF(M4), V(¢p) > 0 <= Monotone stationary solution exists.

Moreover, assume monotonicity = uniqueness.

i1) LetK<u3_<K—|—1.
No non-trivial stationary solution exists.

N /
(BSC) & |¢p| < 1 give sufficiency for existence of sheath. I
Remark

° uﬁ_ € (K + 1,w] = non-monotone solution exists (NOT unique).



Asymptotic stability of sheath
Perturbation

(v,) := (logp,1095), (¥,n,0)(t,z) = (v,u,$)(t,z) — (3,8, $) ().

Perturbation (v, n, o) satisfies equations

()R ) (0),= (8 5) (5),+(2) e
Top = e?TT 0 o=(0+d) 4 ¢ (P.b)
with initial and boundary data to (P)
(¥, m)(0,z) = (¥o,n0)(z) := (log po — 109 p, ug — Uo),
lim (440, 70) (=) = (0,0), (PT)
o(t,0) =0, xILmooa(t,x) = 0. (PB)



Around sheath  ((BSC) = supersonic)

= Both characteristics of Hyperbolic equations (P.a) are

Mi=n+u— VK0 X:=n+u+vVvK<DO.

e NO boundary conditions for [
hyperbolic equations (P.a).

A
e One boundary condition for A&

elliptic equation (P.b).

r=20

= Well-posed with 1 boundary condition (PB),
o(t,0) = 0.



Main result ... [S.Nishibata, M.Ohnawa, M.S.]
Exponential weight

/2 for 4> 0.

-
Theorem 2 (Asymptotic stability of sheath)
up <0, ui >K+1. (BSC)

(e2%/ 24pg, e2%/2n9) € H2(Ry). B+]|¢p| + 1|77/ 29, €57/ 2n0) |2 < 1 =
2
A Time global solution (e7/2y, e7%/2y, f7/25) € () C'([0,00); H).
1=0
Moreover, eP/2q ¢ C([0,00); HY),

1P/ 24, P220) () |13 + |17/ 20 (1) |7 < C||(5%/%4p0, €5/ 2ng) |3 e,

C', v are positive constants.
\_

| -1l; ;=1 |lz: : H-Sobolev norm.




Algebraic weight

Wy = (1+az)M? for A>0, a>0.

KTheorem 3 (Asymptotic stability of sheath)
up <0, ui>K+1. (BSC)
A> 2, (wx o0, wram) € H*(Ry), B+ o+ | (wx a0, wx am0)ll2 < 1
= 1 Time global solution (wy g, wy gn, wy go) € ﬁ C([0, 00); H?™).
Moreover, wy go € C([0,00), H), =
| (wy, g0, w,, M D3 + wy, 5o (DIF < Cll(wy gtbo, wa gno)lI5(1 + B)N
for v e (0,)], C is a positive constant.

N

I -1li := 1|l : H'-Sobolev norm.

(BSC) gives sufficiency for asymptotic stability of sheath. I




2 3
4. Results for R+ & IR{+

Euler-Poisson equations (dimension N = 2,3)

pt + div (pu) = 0, (E.a)
(pu)t + div (pu ® u) + Vp(p) = pVo, (E.b)
AP = p— pe. (E.c)
t>0 . Time variable
z = (x1,2") € (0,00) x RV—1 =: Rﬁf : Space variables
p=p(t,z) >0 . Ion density
w=u(t,z) € RN . Ion velocity
o=0o(t,z) €R . Electrostatic potentialx(—1)
p(p) =Kp (K >0) . Pressure (Isothermal)

pe = e % >0 (Boltzmann relation) : Electron density

V= (01, 02y), (u®u)y=umuj, A= (95 + - +05,).



e Initial data

(p,w)(0,2) = (po,uo)(x), (La)

inf x) > 0, lim cug)(zq,2) = y U4, 0,---,0), > 0.
xeR]ﬁpo( ) xl_m(/oo 0)(z1,2") = (p4,uy ), P+

(I.b)

where py, uy are constants.

e Boundary data

¢(t7 0, CB,) — ¢b7 (B)

where ¢ is constant.

e Reference point of potential

lim ¢(t,z1,2)) = 0. (R)

T1—00

> To construct classical solution to (E.c), it is necessary that



Definition
“Sheath” < monotone planar stationary solution with

u?l >K+1, uy<O0. (BSC)

Stationary problem

Planar stationary solution (p,4,¢) = (p,41,0,---,0,¢)(x1) is solution
to (E) independent of ¢, «'.

(Fi1)ay = O, (S-2)
(#12” +p(P)) = by (S.b)
%5131331 — ﬁ o 6_$7 (SC)

with conditions (I.b), (B), (R), (A)

inf p(x1) >0, lim (p,41,¢)(x1) = (1,uq,0), &(0) = ¢,
x1€R+ L1 —00

Theorem 1 (Existence of monotone stationary solution)
(BSC) & |¢p| < 1 = Monotone stationary solution (p, 1, $) exists.




Main result (N = 2,3) ...[S.Nishibata, M.Ohnawa, M.S.]
Exponential weight

e®%1/2  for a4 > 0.

-
Theorem 4 (Asymptotic stability of sheath)

up <0, ui>K+1. (BSC)

(e9%1/24pg, e2®1/210) € H3(RY). B4|¢p|+](e771/ 240, e771/2n0) |3 < 1

=

3
31 Time global solution (e%%1/2q), P?1/2y P?1/25Y) ¢ ﬂ CH ([0, 00): H37).

=0
Moreover, e?*1/24 ¢ C([0,00); H®),

1(eP71/24p, 821/ 20 (1))|3 41971/ 20 ()2 < C(e7%1/ 24, P71/ 2n0) |3 77,

C', v are positive constants.
\_ J

|- ll; =1l llzyi : H*=Sobolev norm.




Algebraic weight

Wy = (1+az))M? for A>0, a>0.

KTheorem 5 (Asymptotic stability of sheath) A
up <0, ul >K+1. (BSC)
A > 2, (wy,qt0, wr,an0) € H3(RY), 84|¢y|+|(w) atho, wx,am0)ll3 <K 1
= 1 Time global solution (wy g, wy gN, wy go) € ﬁ C*([0, 00); H37Y).
Moreover, wy go € C([0, 00), H?>), =
1wy, g3, wy, gm) (|5 + llwy, so ()12 < Ol (wy g0, wa gm0) 13(1 + BE)N
kfor v € (0,)\], C is a positive constant.

| -1l; ==l |lz: : H-Sobolev norm.

(BSC) gives sufficiency for asymptotic stability of sheath. I




Concluding Remarks

euil >K+1 (BSC) =

> Existence of stationary solution, not-unique.
& Monotone stationary solution is unique.
& Monotone stationary solution is time asymptotically stable.

(BSC) = Linearly stable.

e Spectrum analysis supports { Otherwise = Linearly unstable.

$ (BSC) may be necessary condition for stability.

We call monotone stationary solution as ‘“sheath’ . I



