プラズマ物理に現れる Euler-Poisson方程式の定常解について

鈴木政尋

(早稲田大学 非線形偏微分方程式研究所 研究助手)

Based on joint research with

西畑伸也 (東京工業大学) 大縄将史 (東京工業大学)

Contents

- 1. Physical background
- 2. Formulation of mathematical problem for \mathbb{R}_+
 - (a) Related results
 - (b) Main results
 - i. Unique existence of stationary solution
 - ii. Asymptotic stability of sheath
 - (c) Outline of proof
- 3. Results for \mathbb{R}^2_+ & \mathbb{R}^3_+

Plasma in Whole Space

$$u_e \gg u_i$$
 (:: $m_e \ll m_i$)

Nearly neutral : $\begin{array}{c} \rho_e \coloneqq \rho_i \\ \phi \coloneqq 0 \end{array}$

m: mass

u : velocity

 ρ : density

subscripts

Put a wall

i: ion

e: electron I

On the wall, Electrons accumulate

 $(:: u_e \gg u_i)$

Plasma in Half Space

Elsewhere, Ions dominate

 ϕ : electric potential

Density

More electrons attain on wall and are absorbed.

Potential

Wall is negatively charged.

 $\underline{\text{Negative potential}} \Rightarrow \text{Electrons are reflected \& ions are accelerated.}$

 \Rightarrow Flux of ions and electrons coincide at wall.

 \Rightarrow It attains steady state.

This stationary boundary layer is called **sheath**.

Remark Density and potential are monotone.

Bohm's Sheath Criterion

For sheath formation, physical observation requires

Bohm sheath criterion

$$u_{+}^{2} > K + 1, \quad u_{+} < 0.$$
 (BSC)

 u_{+} : Ion's velocity around sheath edge

K: Ion's temperature (\sqrt{K} : sonic velocity)

Remark (BSC) \Rightarrow Supersonic condition : $u_+^2 > K$.

Justify Bohm's physical observation mathematically.

2. Formulation of mathematical problem for \mathbb{R}_+

Euler-Poisson equations (N = 1)

$$\rho_t + (\rho u)_x = 0, \tag{E.a}$$

$$(\rho u)_t + \left(\rho u^2 + p(\rho)\right)_x = \rho \phi_x, \tag{E.b}$$

$$\phi_{xx} = \rho - \rho_e. \tag{E.c}$$

 $x \in \mathbb{R}_+ := (0, \infty), \ t > 0$: Space & Time variables

 $\rho = \rho(t, x) > 0$: Ion density

 $u=u(t,x)\in\mathbb{R}$: Ion velocity $\phi=\phi(t,x)\in\mathbb{R}$: Electrostatic potential imes(-1)

 $p(\rho) = K\rho$ (K > 0) : Pressure (Isothermal)

 $\rho_e = e^{-\phi} > 0$ Electron density (Boltzmann relation)

[Chen, Introduction plasma physics, '77]

introduces the Euler-Poisson equations (E).

Initial data

$$(\rho, u)(0, x) = (\rho_0, u_0)(x),$$
 (I.a)

$$\inf_{x \in \mathbb{R}_{+}} \rho_{0}(x) > 0, \quad \lim_{x \to \infty} (\rho_{0}, u_{0})(x) = (\rho_{+}, u_{+}), \quad \rho_{+} > 0, \tag{I.b}$$

where ρ_+ , u_+ are constants.

• Boundary data

$$\phi(t,0) = \phi_b, \tag{B}$$

where ϕ_b is constant.

Reference point of potential

$$\lim_{x \to \infty} \phi(t, x) = 0. \tag{R}$$

♦ To construct classical solution to (E.c), it is necessary that

$$\rho_{+} = 1. \tag{A}$$

Definition

"Sheath"
 monotone stationary solution with

$$u_{+}^{2} > K + 1, \quad u_{+} < 0.$$
 (BSC)

Stationary problem

Stationary solution $(\tilde{\rho}, \tilde{u}, \tilde{\phi})$ is solution to (E) independent of t,

$$(\tilde{\rho}\tilde{u})_x = 0, \tag{S.a}$$

$$\left(\tilde{\rho}\tilde{u}^2 + p(\tilde{\rho})\right)_x = \tilde{\rho}\tilde{\phi}_x, \tag{S.b}$$

$$\tilde{\phi}_{xx} = \tilde{\rho} - e^{-\tilde{\phi}} \tag{S.c}$$

$$\tilde{\phi}_{xx} = \tilde{\rho} - e^{-\phi} \tag{S.c}$$

with conditions (I.b), (B), (R), (A)

$$\inf_{x \in \mathbb{R}_+} \tilde{\rho}(x) > 0, \quad \lim_{x \to \infty} (\tilde{\rho}, \tilde{u}, \tilde{\phi})(x) = (1, u_+, 0), \quad \tilde{\phi}(0) = \phi_b.$$

Problem

- 1. When does stationary solution exist?
- 2. Is sheath asymptotically stable?

Related results on asymptotic analysis

(E) over bounded domain (0,1)

Existence of stationary solution

• [A. Ambroso, F. Méhats, P.-A. Raviart, AA'01] Existence of stationary solution is shown under (BSC).

Stability of stationary solution

• [A. Ambroso M3AS'06]

Numerical result. Solution approaches stationary solution.

It is open problem to prove its stability.

Existence of monotone stationary solution

$$(\tilde{\rho}\tilde{u})_x = 0, \quad (\tilde{\rho}\tilde{u}^2 + K\tilde{\rho})_x = \tilde{\rho}\tilde{\phi}_x, \quad \tilde{\phi}_{xx} = \tilde{\rho} - e^{-\tilde{\phi}}$$
 (S)

with conditions

$$\inf_{x \in \mathbb{R}_+} \tilde{\rho}(x) > 0, \quad \lim_{x \to \infty} (\tilde{\rho}, \tilde{u}, \tilde{\phi})(x) = (1, u_+, 0), \quad \tilde{\phi}(0) = \phi_b.$$

Derive conditions

•
$$\int_x^{\infty} (\text{S.a}) dx$$
, $\lim_{x \to \infty} (\tilde{\rho}, \tilde{u})(x) = (1, u_+) \Rightarrow$
 $\tilde{\rho}\tilde{u} = u_+$.

•
$$\int_{x}^{\infty} (\mathrm{S.b})/\tilde{\rho} \, dx$$
, $\lim_{x \to \infty} (\tilde{\rho}, \tilde{u})(x) = (1, u_{+}) \Rightarrow$

$$\tilde{\phi} = f(\tilde{\rho}), \quad f(\tilde{\rho}) := K \log \tilde{\rho} + \frac{u_+^2}{2\tilde{\rho}^2} - \frac{u_+^2}{2}.$$

$$\dagger \tilde{\rho} = f^{-1}(\tilde{\phi}) \Rightarrow \text{scalar equation for } \tilde{\phi}.$$

- Define inverse function $f^{-1}(\tilde{\phi})$
 - \diamondsuit For $u_+ = 0$, $f^{-1} = e^{\tilde{\phi}/K}$.
 - \diamondsuit For $u_+ \neq 0$, define f^{-1} by choosing blue branch.

Graph of f Mach number $M_+ := |u_+|/\sqrt{K}$. $\lim_{x\to\infty} (\tilde{\rho}, \tilde{\phi}) = (1,0)$.

• Substitute $\tilde{\rho} = f^{-1}(\tilde{\phi})$ in (S.c), $\int_x^{\infty} (\text{S.c}) \times \tilde{\phi}_x \, dx \Rightarrow$

$$\tilde{\phi}_x^2 = 2V(\tilde{\phi}), \quad V(\tilde{\phi}) := \int_0^{\tilde{\phi}} f^{-1}(\eta) - e^{-\eta} d\eta,$$

 $V(\tilde{\phi})$ is called Sagdeev potential.

Necessary condition for existence

 \diamondsuit ϕ_b must belong to image of f, that is,

$$\phi_b \geq f(M_+)$$
.

♦ It is necessary that

$$V(\phi_b) \geq 0$$
.

<u>Graph of V</u> Define $\omega \in (K+1,\infty)$ s.t. $\omega \leq u_+^2 \iff 0 \leq V(f(M_+))$.

Main result

... [M.S. to appear in KRM]

Theorem 1 (Existence of monotone stationary solution)

- i) Let $u_{+}^{2} \leq K$ or $K+1=u_{+}^{2}$ or $K+1 < u_{+}^{2}$. $\phi_{b} \geq f(M_{+}), \ V(\phi_{b}) \geq 0 \iff$ Monotone stationary solution exists. Moreover, assume monotonicity \Rightarrow uniqueness.
- ii) Let $K < u_+^2 < K+1$. No non-trivial stationary solution exists.

(BSC) & $|\phi_b| \ll 1$ give sufficiency for existence of sheath.

Remark

• $u_+^2 \in (K+1,\omega] \Rightarrow$ non-monotone solution exists (NOT unique).

Asymptotic stability of sheath

Perturbation

$$(v, \tilde{v}) := (\log \rho, \log \tilde{\rho}), \quad (\psi, \eta, \sigma)(t, x) := (v, u, \phi)(t, x) - (\tilde{v}, \tilde{u}, \tilde{\phi})(x).$$

Perturbation (ψ, η, σ) satisfies equations

$$\begin{pmatrix} \psi \\ \eta \end{pmatrix}_t + \begin{pmatrix} \eta + \tilde{u} & 1 \\ K & \eta + \tilde{u} \end{pmatrix} \begin{pmatrix} \psi \\ \eta \end{pmatrix}_x = \begin{pmatrix} \eta & 0 \\ 0 & \eta \end{pmatrix} \begin{pmatrix} \tilde{v} \\ \tilde{u} \end{pmatrix}_x + \begin{pmatrix} 0 \\ \sigma_x \end{pmatrix}, \text{ (P.a)}$$

$$\sigma_{xx} = e^{\psi + \tilde{v}} - e^{\tilde{v}} - e^{-(\sigma + \tilde{\phi})} + e^{-\tilde{\phi}}. \tag{P.b}$$

with initial and boundary data to (P)

$$(\psi, \eta)(0, x) = (\psi_0, \eta_0)(x) := (\log \rho_0 - \log \tilde{\rho}, u_0 - \tilde{u}_0),$$

$$\lim_{x \to \infty} (\psi_0, \eta_0)(x) = (0, 0),$$
(PI)

$$\sigma(t,0) = 0, \quad \lim_{x \to \infty} \sigma(t,x) = 0.$$
 (PB)

Around sheath $((BSC) \Rightarrow supersonic)$

⇒ Both characteristics of Hyperbolic equations (P.a) are

$$\lambda_1:=\eta+ ilde{u}-\sqrt{K}<0, \quad \lambda_2:=\eta+ ilde{u}+\sqrt{K}<0.$$

- No boundary conditions for hyperbolic equations (P.a).
- One boundary condition for elliptic equation (P.b).

 \Rightarrow Well-posed with 1 boundary condition (PB),

$$\sigma(t,0)=0.$$

Main result

... [S.Nishibata, M.Ohnawa, M.S.]

Exponential weight

$$e^{\alpha x/2}$$
 for $\alpha > 0$.

Theorem 2 (Asymptotic stability of sheath)

$$u_+ < 0, \quad u_+^2 > K + 1.$$
 (BSC)

$$(e^{\alpha x/2}\psi_0, e^{\alpha x/2}\eta_0) \in H^2(\mathbb{R}_+). \ \beta + |\phi_b| + \|(e^{\beta x/2}\psi_0, e^{\beta x/2}\eta_0)\|_2 \ll 1 \Rightarrow$$

$$\exists 1$$
 Time global solution $(e^{\beta x/2}\psi, e^{\beta x/2}\eta, e^{\beta x/2}\sigma) \in \bigcap_{i=0}^2 C^i([0, \infty); H^{2-i}).$

Moreover, $e^{\beta x/2}\sigma \in C([0,\infty); H^4)$,

$$\|(e^{\beta x/2}\psi, e^{\beta x/2}\eta)(t)\|_{2}^{2} + \|e^{\beta x/2}\sigma(t)\|_{4}^{2} \le C\|(e^{\beta x/2}\psi_{0}, e^{\beta x/2}\eta_{0})\|_{2}^{2}e^{-\gamma t},$$

C, γ are positive constants.

 $\|\cdot\|_i:=\|\cdot\|_{H^i}: H^i$ -Sobolev norm.

Algebraic weight

$$w_{\lambda,\alpha} := (1 + \alpha x)^{\lambda/2}$$
 for $\lambda > 0$, $\alpha > 0$.

Theorem 3 (Asymptotic stability of sheath)

$$u_+ < 0, \quad u_+^2 > K + 1.$$
 (BSC)

 $\lambda \geq 2$, $(\boldsymbol{w_{\lambda,\alpha}\psi_0}, \boldsymbol{w_{\lambda,\alpha}\eta_0}) \in \boldsymbol{H}^2(\mathbb{R}_+)$, $\beta + |\phi_b| + \|(w_{\lambda,\alpha}\psi_0, w_{\lambda,\alpha}\eta_0)\|_2 \ll 1$

 $\Rightarrow \exists 1$ Time global solution $(w_{\lambda,\beta}\psi,w_{\lambda,\beta}\eta,w_{\lambda,\beta}\sigma) \in \bigcap_{i=0}^{2} C^{i}([0,\infty);H^{2-i}).$

Moreover, $w_{\lambda,\beta}\sigma \in C([0,\infty),H^4)$,

 $\|(w_{\nu,\beta}\psi, w_{\nu,\beta}\eta)(t)\|_{2}^{2} + \|w_{\nu,\beta}\sigma(t)\|_{4}^{2} \le C\|(w_{\lambda,\beta}\psi_{0}, w_{\lambda,\beta}\eta_{0})\|_{2}^{2}(1+\beta t)^{\lambda-\nu}$

for $\nu \in (0, \lambda]$, C is a positive constant.

 $\|\cdot\|_i := \|\cdot\|_{H^i} : H^i$ -Sobolev norm.

(BSC) gives sufficiency for asymptotic stability of sheath.

4. Results for \mathbb{R}^2_+ & \mathbb{R}^3_+

Euler-Poisson equations (dimension N = 2,3)

$$(\rho u)_t + \operatorname{div}(\rho u \otimes u) + \nabla p(\rho) = \rho \nabla \phi, \qquad (\text{E.b})$$

$$\Delta \phi = \rho - \rho_e. \qquad (\text{E.c})$$

$$t > 0 \qquad \qquad : \text{ Time variable}$$

$$x = (x_1, x') \in (0, \infty) \times \mathbb{R}^{N-1} =: \mathbb{R}^N_+ \qquad : \text{ Space variables}$$

$$\rho = \rho(t, x) > 0 \qquad \qquad : \text{ Ion density}$$

$$u = u(t, x) \in \mathbb{R}^N \qquad \qquad : \text{ Ion velocity}$$

$$\psi = \psi(t, x) \in \mathbb{R} \qquad \qquad : \text{ Electrostatic potential} \times (-1)$$

$$\psi(\rho) = K\rho \quad (K > 0) \qquad : \text{ Pressure} \quad (\text{Isothermal})$$

 $\rho_t + \text{div}(\rho u) = 0.$

(E.a)

$$\nabla = (\partial_{x_1}, \cdots, \partial_{x_N}), \quad (u \otimes u)_{ij} = u_i u_j, \quad \Delta = (\partial_{x_1}^2 + \cdots + \partial_{x_N}^2).$$

 $\rho_e = e^{-\phi} > 0$ (Boltzmann relation) : Electron density

Initial data

$$\inf_{x \in \mathbb{R}^{N}_{+}} \rho_{0}(x) > 0, \quad \lim_{x_{1} \to \infty} (\rho_{0}, u_{0})(x_{1}, x') = (\rho_{+}, u_{+}, 0, \cdots, 0), \quad \rho_{+} > 0.$$
(I.a)
$$(I.b)$$

where ρ_+ , u_+ are constants.

Boundary data

$$\phi(t, 0, x') = \phi_b, \tag{B}$$

where ϕ_b is constant.

Reference point of potential

$$\lim_{x_1 \to \infty} \phi(t, x_1, x') = 0. \tag{R}$$

 \Diamond To construct classical solution to (E.c), it is necessary that

$$\rho_{+} = 1. \tag{A}$$

Definition

"Sheath" \Leftrightarrow monotone planar stationary solution with

$$u_{+}^{2} > K + 1, \quad u_{+} < 0.$$
 (BSC)

Stationary problem

Planar stationary solution $(\tilde{\rho}, \tilde{u}, \tilde{\phi}) = (\tilde{\rho}, \tilde{u}_1, 0, \dots, 0, \tilde{\phi})(x_1)$ is solution to (E) independent of t, x'.

$$(\tilde{\rho}\tilde{u}_1)_{x_1} = 0, \tag{S.a}$$

$$\left(\tilde{\rho}\tilde{u}_1^2 + p(\tilde{\rho})\right)_{x_1} = \tilde{\rho}\tilde{\phi}_{x_1},\tag{S.b}$$

$$\tilde{\phi}_{x_1 x_1} = \tilde{\rho} - e^{-\tilde{\phi}}, \tag{S.c}$$

with conditions (I.b), (B), (R), (A)

$$\inf_{x_1 \in \mathbb{R}_+} \tilde{\rho}(x_1) > 0, \quad \lim_{x_1 \to \infty} (\tilde{\rho}, \tilde{u}_1, \tilde{\phi})(x_1) = (1, u_+, 0), \quad \tilde{\phi}(0) = \phi_b.$$

Theorem 1 (Existence of monotone stationary solution) (BSC) & $|\phi_b| \ll 1 \Rightarrow Monotone \ stationary \ solution \ (\tilde{\rho}, \tilde{u}_1, \tilde{\phi}) \ exists.$

Main result (N=2,3) ... [S.Nishibata, M.Ohnawa, M.S.]

Exponential weight

$$e^{\alpha x_1/2}$$
 for $\alpha > 0$.

Theorem 4 (Asymptotic stability of sheath)

$$u_+ < 0, \quad u_+^2 > K + 1.$$
 (BSC)

 $\frac{(e^{\alpha x_1/2}\psi_0, e^{\alpha x_1/2}\eta_0) \in H^3(\mathbb{R}^N_+). \ \beta + |\phi_b| + \|(e^{\beta x_1/2}\psi_0, e^{\beta x_1/2}\eta_0)\|_3 \ll 1}{\Rightarrow}$

 $\exists 1$ Time global solution $(e^{\beta x_1/2}\psi, e^{\beta x_1/2}\eta, e^{\beta x_1/2}\sigma) \in \bigcap_{i=0}^{3} C^i([0, \infty); H^{3-i}).$

Moreover, $e^{\beta x_1/2}\sigma \in C([0,\infty); H^5)$,

 $\|(e^{\beta x_1/2}\psi, e^{\beta x_1/2}\eta)(t)\|_3^2 + \|e^{\beta x_1/2}\sigma(t)\|_5^2 \le C\|(e^{\beta x_1/2}\psi_0, e^{\beta x_1/2}\eta_0)\|_3^2 e^{-\gamma t},$

C, γ are positive constants.

 $\|\cdot\|_i := \|\cdot\|_{H^i} : H^i$ -Sobolev norm.

Algebraic weight

$$w_{\lambda,\alpha} := (1 + \alpha x_1)^{\lambda/2}$$
 for $\lambda > 0$, $\alpha > 0$.

Theorem 5 (Asymptotic stability of sheath)

$$u_{+} < 0, \quad u_{+}^{2} > K + 1.$$
 (BSC)

 $\lambda \geq 2$, $(w_{\lambda,\alpha}\psi_0, w_{\lambda,\alpha}\eta_0) \in H^3(\mathbb{R}^N_+)$, $\beta + |\phi_b| + ||(w_{\lambda,\alpha}\psi_0, w_{\lambda,\alpha}\eta_0)||_3 \ll 1$

 \Rightarrow $\exists 1$ Time global solution $(w_{\lambda,\beta}\psi,w_{\lambda,\beta}\eta,w_{\lambda,\beta}\sigma)\in\bigcap_{i=0}^{\sigma}C^i([0,\infty);H^{3-i}).$

Moreover, $w_{\lambda,\beta}\sigma \in C([0,\infty),H^5)$,

 $\|(w_{\nu,\beta}\psi, w_{\nu,\beta}\eta)(t)\|_{3}^{2} + \|w_{\nu,\beta}\sigma(t)\|_{5}^{2} \le C\|(w_{\lambda,\beta}\psi_{0}, w_{\lambda,\beta}\eta_{0})\|_{3}^{2}(1+\beta t)^{\lambda-\nu}$

for $\nu \in (0, \lambda]$, C is a positive constant.

 $\|\cdot\|_i := \|\cdot\|_{H^i} : H^i$ -Sobolev norm.

(BSC) gives sufficiency for asymptotic stability of sheath.

Concluding Remarks

- $u_+^2 > K + 1 \text{ (BSC)} \Rightarrow$
 - ♦ Existence of stationary solution, not-unique.
 - ♦ Monotone stationary solution is unique.
 - ♦ Monotone stationary solution is time asymptotically stable.
- Spectrum analysis supports $\left\{ \begin{array}{l} (BSC) \Rightarrow \text{Linearly stable.} \\ \text{Otherwise} \Rightarrow \text{Linearly unstable.} \end{array} \right.$
 - ♦ (BSC) may be necessary condition for stability.

We call monotone stationary solution as "sheath".