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Abstract. For two-fluid flow problems with surface tension we present finite
element schemes based on energy-stable approximation. In the case of no
surface tension, those schemes are unconditionally stable in the energy-sense.
When there exists surface tension, they are proved to be stable if a quantity
remains bounded in the computation. Some numerical results of rising bubble
problems show the robustness and the applicability of these schemes.
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1 Introduction

Multifluid and multiphase flows occur in many scientific and engineering problems. Two
issues in analyzing those flows are to find the position of interfaces separating fluids and to
handle the surface tension on the interfaces. Many numerical schemes have been developed
and applied to those flow problems, see e.g., [3, 10, 11] and references therein. It is,
however, not an easy task to construct numerical schemes, stable and convergent. To
the best of our knowledge, there are no numerical schemes whose solutions are proved to
converge to the exact one. There are very little discussion even for the stability of schemes.
When there is no surface tension, we have developed energy stable finite element schemes
from the approach of the density-dependent Navier-Stokes equations and applied them to
the Rayleigh-Taylor problem [7, 8]. These schemes are proved to be unconditionally stable
in the energy sense. In this formulation the density is treated as a field function solved in
the whole domain, and it also works as a level set function.

Here we extend the energy-stable finite element schemes to two-fluid flow problems with
surface tension. We consider two-dimensional problems. The interface curve is represented
by a vector-valued function in one parameter, which is approximated by a piecewise linear
function, that is, the interface curve is approximated by a polygon. The function is updated
by solving numerically ordinary differential equations, an interface-tracking method. The
Navier-Stokes equations written in the weak formulation including the surface tension,
expressed also in a weak form, are solved in the fixed finite element mesh. We employ the
P2/P1 finite element to get the velocity and the pressure, whose convergence theory has
been well established [1, 2]. When there exists surface tension, they are proved to be stable
if a quantity corresponding to L2-norm of the curvature is bounded in the computation.
In this paper we mainly consider the non-slip boundary conditions. Some preliminary
numerical results subject to the slip boundary conditions have been reported in [6].
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The contents of this paper are as follows. In Section 2 we formulate two-fluid flow
problems with surface tension. In Section 3 finite element schemes for the problems are
described. We discuss the stability in the energy sense in Section 4. In Section 5 we show
numerical results for bubble rising problems.

Throughout the paper c represents a positive constant independent of the discretization
parameters, which may take a different value at each appearance.

2 Two-fluid flow problems with surface tension

Let Ω be a bounded domain in R2 with piecewise smooth boundary Γ, and T be a positive
number. At the initial time t = 0 the domain Ω is occupied by two immiscible incompress-
ible viscous fluids; each domain is denoted by Ω0

k, k = 1, 2, whose interface ∂Ω0
1 ∩ ∂Ω0

2 is
denoted by Γ0

12. We assume that Γ0
12 is a closed curve, which means that one fluid, say,

fluid 1, is in the interior of the other fluid 2. At t ∈ (0, T ) the two fluids occupy domains
Ωk(t), k = 1, 2, and the interface curve is denoted by Γ12(t). Let ρk and µk, k = 1, 2, be
the densities and the viscosities of the two fluids. Let

u : Ω× (0, T ) → R2, p : Ω× (0, T ) → R

be the velocity and the pressure to be found. The Navier-Stokes equations are satisfied in
each domain Ωk(t), k = 1, 2, t ∈ (0, T ),

ρk

{
∂u

∂t
+ (u · ∇)u

}
−∇

[
2µkD(u)

]
+∇p = ρkf, (1)

∇ · u = 0, (2)

where f : Ω × (0, T ) → R2 is a given function and D(u) is the strain-rate tensor defined
by

Dij(u) =
1
2

(
∂ui

∂xj
+

∂uj

∂xi

)
.

The interface Γ12 is assumed to move with the velocity u at that position, that is, any
fluid particle on Γ0

12 remains on the interface Γ12(t) at any time t. On Γ12(t), t ∈ (0, T ),
interface conditions

[u] = 0, [− pn + 2µD(u)n] = σ0κn (3)

are imposed, where [·] means the difference of the values approached from both sides to
the interface, κ is the curvature of the interface, σ0 is the coefficient of surface tension,
and n is the unit normal vector. On the boundary Γ, t ∈ (0, T ), the non-slip conditions

u = 0 (4)

are imposed. Initial conditions at t = 0 for the velocity

u = u0 (5)

are given.
Our purpose is to construct a numerical scheme for this problem. In order to derive a

scheme we reformulate the problem as follows: find functions

χ : [0, 1]× (0, T ) → R2, (u, p) : Ω× (0, T ) → R2 ×R
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satisfying for any t ∈ (0, T ),

∂χ

∂t
= u(χ, t), (s ∈ [0, 1]) (6)

and (1) and (2) in Ωk(t), k = 1, 2, with interface conditions (3), boundary conditions (4),
and initial conditions (5) and

χ(·, 0) = χ0, (7)

where χ0 : [0, 1] → R2 is an initial closed curve in Ω. For any t, χ(1, t) = χ(0, t) and

C(t) = {χ(s, t); s ∈ [0, 1]}

is a closed curve in Ω. C(t) is nothing but the interface curve at t, and Ωk(t), k = 1, 2, are
defined as the interior and the exterior of C(t), respectively.

Remark 2.1 (4) can be replaced by the slip boundary conditions,

u · n = 0, D(u)n× n = 0. (8)

The following discussion is still valid in this case with a little modification. See Remark
4.5.

3 Energy-stable finite element approximation

We now present two finite element schemes based on the energy-stable approximation [8]
for the problem described in the previous section. We prepare function spaces,

X = {χ ∈ H1(0, 1)2;χ(1) = χ(0)}, V = H1
0 (Ω)2, Q = L2

0(Ω).

We find a set of functions

(χ, u, p) : (0, T ) → X × V ×Q.

Let Xh, Vh, and Qh be finite-dimensional approximation spaces of X, V , and Q. Let ∆t
be a time increment and NT = bT/∆tc. We seek approximate solutions χn

h, un
h, and pn

h

at t = n∆t in Xh, Vh, and Qh, respectively. More precisely, these approximate function
spaces are constructed as follows. Dividing the domain Ω into a union of triangles, we use
P2 and P1 finite element spaces for Vh and Qh, respectively. They are fixed for any time
step n. On the other hand Xh is composed of functions obtained by the parameterization
of polygons. We denote by {sn

i ∈ [0, 1]; i = 0, · · · , Nn
x } the set of parameter values such

that sn
0 = 0 and sn

Nn
x

= 1 and that {χn
h(sn

i ); i = 0, · · · , Nn
x } are vertices of a polygon.

The number Nn
x may change depending on n. We also introduce an auxiliary function

space Φh consisting of piecewise constant functions on elements. We denote by D̄∆t the
backward difference operator, i.e.,

D̄∆tu
n
h =

un
h − un−1

h

∆t
.
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Scheme I: Find {(χn
h, un

h, pn
h) ∈ Xh × Vh ×Qh;n = 1, · · · , NT } satisfying

D̄∆tχ
n
h =

3
2
un−1

h (χn−1
h )− 1

2
un−2

h (χn−1
h −∆tun−1

h (χn−1
h )), ∀sn−1

i (9)
(
ρn−1

h D̄∆tu
n
h +

1
2
un

hD̄∆tρ
n
h, vh

)
+ a1(ρn

h, un−1
h , un

h, vh) + a0(ρn
h, un

h, vh) + b(vh, pn
h)

= (ρn
hΠhfn, vh)− dh(χn

h, vh; Cn
h ), ∀vh ∈ Vh (10)

b(un
h, qh) = 0, ∀qh ∈ Qh (11)

subject to the initial conditions

χ0
h = Πhχ0, u0

h = Πhu0. (12)

Here Πh is the interpolation operator to the corresponding finite-dimensional space, (·, ·)
shows the inner product in L2(Ω)2, and

a1(ρ,w, u, v) =
∫

Ω

1
2
ρ
{

[(∇ · w)u] · v − [(∇ · w)v] · u
}

dx,

a0(ρ, u, v) =
∫

Ω
2µ(ρ)D(u) : D(v) dx,

b(v, q) = −
∫

Ω
(∇ · v)q dx,

dh(u, v; Ch) =
Nx∑

i=1

σ0D̄∆suiD̄∆svi
(si − si−1)2

|χi − χi−1| ,

µ(ρ) = µ1
ρ2 − ρ

ρ2 − ρ1
+ µ2

ρ− ρ1

ρ2 − ρ1
.

Cn
h is a polygon obtained from χn

h. (9) is the Adams-Bashforth approximation of (6). The
number of particles on the interface at time step n is denoted by Nn

x . We control Nn
x

so that the particles may distribute quasi-uniformly, i.e., we add or delete particles by
judging distances of neighboring particles. A more precise description of (9) is as follows.
We denote Xh at time step n by Xh(Nn

x ). Let χ
n−1/2
h ∈ Xh(Nn−1

x ) be an intermediate
function such that for i = 0, · · · , Nn−1

x at sn−1
i ,

χ
n−1/2
h − χn−1

h

∆t
=

3
2
un−1

h (χn−1
h )− 1

2
un−2

h (χn−1
h −∆tun−1

h (χn−1
h )). (13)

Adding and deleting particles to χ
n−1/2
h , we get χn

h ∈ Xh(Nn
x ). Once χn

h is known, we can
define Ωn

hk, k = 1, 2, as the interior and the exterior of the polygon Cn
h , respectively. In

(10) ρn
h ∈ Φh is an auxiliary function defined by

ρn
h(K) = ρk

for the element K included in Ωn
hk. For the element K intersecting with Cn

h , ρn
h(K) is

defined as the density averaged by the areas occupied by ρk. Equations (10) and (11)
are approximations of the corresponding weak forms, which are derived as follows. Let
ρ : Ω× (0, T ) → R be a function governed by the convection equation,

∂ρ

∂t
+ u · ∇ρ = 0. (14)
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Although the density of our problem is discontinuous, we suppose that it is approximated
by a function having the first order derivatives. We multiply (14) by u/2, and add it to (1).
Multiplying the equation by a test function v ∈ V , integrating by parts, and incorporating
the interface conditions (3) and the boundary conditions (4), we obtain

(
ρ
∂u

∂t
+

1
2
u

∂ρ

∂t
, v

)
+ a1(ρ, u, u, v) + a0(ρ, u, v) + b(v, p) = (ρf, v)− d(χ, v; C), (15)

where
d(u, v) ≡

∫

C
σ0

∂u

∂`

∂v

∂`
d`

is a bilinear form derived from the surface tension, and ` is the arclength of the interface
curve C. Here we have used the fact that κn is equal to the second derivative of χ with
respect to ` and the integration by parts on the closed curve C. The weak formulation of
(2) is nothing but

b(u, q) = 0,

where q ∈ Q is a test function. (10) and (11) consist of an energy-stable finite element
scheme developed in [8] when there is no term dh. The bilinear form dh is an approximation
of d.

Scheme II: We add the term

∆t dh(un
h, vh; Cn

h )

to the left-hand side of (10). The other parts are same as Scheme I.
Since the fluids are incompressible, each area Ωk(t) remains constant. In order to

keep this property we correct χ
n−1/2
h after (13) by expanding or shrinking Cn−1/2

h from the
centroid. Thus our schemes keep the property measΩn

hk = measΩ0
hk for all n.

Remark 3.1 (i) In deriving the weak form (15), we have assumed that ρ had the first
order derivatives. In the scheme (10), however, we do not need any regularity on ρh, which
enables us to use ρh ∈ Φh.

(ii) Scheme II is obtained when the curvature of the interface is computed implicitly
from χn+1

h , which is approximated by

χn
h + ∆tun

h.

For the idea of the introduction of this term we refer to [9]. Scheme II is more stable than
Scheme I, which is recognized by numerical results in Section 5.
(iii) For the first step n = 1 we replace (9) by the Euler method.

4 Stability in energy

Now we consider the stability in energy of Schemes I and II. We equip the function spaces
Vh, and Qh with the norms H1(Ω)2 and L2(Ω), respectively. They are denoted simply by
|| · ||1 and || · ||0. In (10) the functions ρn−1

h , ρn
h, un−1

h , and χn
h are all known. The system

of (10) and (11) is a generalized Stokes problem in un
h and pn

h. Since the P2/P1 element
satisfies the inf-sup condition, the problem is uniquely solvable.
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For a series of functions φh = {φn
h}NT

n=0 in a Banach space W we prepare norms defined
by

||φh||`∞(W ) ≡ max{||φn
h||W ; 0 ≤ n ≤ NT },

||φh||`2(W ) ≡
{

∆t

NT∑

n=0

||φn
h||2W

}1/2

.

For a closed curve C we denote the L2-norm of a function v on the curve by

||v||0,C =

√∫

C
|v|2d`.

Since Cn
h is a polygon, we can apply the trace theorem; there exists a positive constant c

such that for any v ∈ H1(Ω) it holds that

||v||0,Cn
h
≤ c||v||1.

In general, the constant c depends on the length and the smoothness of the curve. We
assume that it does not depend on h and n and that the curve is not self-intersecting for
the simplicity.

Hypothesis 4.1 (i) Cn
h is not self-intersecting.

(ii) There exists a positive constant c0 independent of h and n such that

||v||0,Cn
h
≤ c0||v||1 (∀v ∈ H1(Ω)). (16)

Remark 4.2. If Cn
h is divided into a number (independent of h and n) of parts and

if the gradients ∇χn
h are uniformly (in h and n) bounded on each part, then assumption

(16) is satisfied. Although (16) looks like a rather mild assumption, it seems not so easy
to give a sufficient condition for it on our schemes I and II.

Let χh ∈ Xh and {si ∈ [0, 1]; i = 0, · · · , Nx} be the set of parameters, s0 = 0, sNx =
1, χh(1) = χh(0). We define the quantitiy ||χh||H2

0,h(Ch) by

||χh||H2
0,h(Ch) =

{Nx−1∑

i=0

|(D2
∆`χh)(si)|2`i

}1/2
, (17)

where

`i =
1
2
(`i+1/2 + `i−1/2), `i+1/2 = |χh(si+1)− χh(si)|,

(D2
∆`χh)(si) =

(χh(si+1)− χh(si)
`i+1/2

− χh(si)− χh(si−1)
`i−1/2

)
/`i.

Proposition 4.3 Suppose that Schemes I or II has a solution (ρn
h, un

h, pn
h) ∈ Φh×Vh×Qh,

n = 0, · · · , NT , and that Hypothesis 4.1 is satisfied. Then there exists a positive constant
c independent of h and ∆t such that

||√ρhuh||`∞(L2), ||
√

µhD(uh)||`2(L2)

≤c
{
||
√

ρ0
hu0

h||0 + ||√ρh Πhf ||`2(L2) +
c0 σ0√
µmin

||χh||`2(H2
0,h(Ch))

}
, (18)
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where µmin = min(µ1, µ2).
Proof. We substitute vh = un

h in (10). The first term is equal to
(

ρn−1
h D̄∆tu

n
h +

1
2
un

hD̄∆tρ
n
h, un

h

)

= D̄∆t

(
1
2
||√ρn

hun
h||20

)
+

1
2
||
√

∆t
√

ρn−1
h D̄∆tu

n
h||20.

The second term vanishes. The third term is estimated as

a0(ρn
h, un

h, un
h) ≥ 1

2
a0(ρn

h, un
h, un

h) + µmin ||D(un
h)||20

≥ 1
2
a0(ρn

h, un
h, un

h) + c2
1 µmin ||un

h||21,
where c1 is a positive constant in the Korn inequality. The fourth term vanishes from
(11). The first term of the right-hand side is evaluated as

| (ρn
hΠhfn, un

h) | ≤ ε||√ρn
hun

h||20 +
1
4ε
||√ρn

hΠhfn||20
where ε is any positive constant. The second term of the right-hand side is rewritten as

−dh(χn
h, un

h; Cn
h ) =

Nn
x−1∑

i=0

σ0(D2
∆`χ

n
h)(sn

i )un
h(sn

i )`i

using summation by parts. The right-hand side is evaluated by

σ0||χn
h||H2

0,h(Ch){
Nn

x−1∑

i=0

un
h(sn

i )2`i}1/2 ≤ cσ0||χn
h||H2

0,h(Ch)||un
h||0,Cn

h

≤ cc0σ0||χn
h||H2

0,h(Ch)||un
h||1

≤ c c2
0 σ2

0

1
c2
1 µmin

||χn
h||2H2

0,h(Ch) + c2
1 µmin||un

h||21

Combining these estimates and applying the discrete Gronwall inequality, we get (18). In
Scheme II we have another term ∆tdh(un

n, un
h; Cn

H) in the left-hand side, which increases
the stability.

Remark 4.4 (i) There are correspondences,

||√ρuh||`∞(L2) ∼ max
{{∫

Ω
ρ(t)|u(t)|2dx

}1/2; 0 ≤ t ≤ T
}

,

||χh||`2(H2
0,2(Ch)) ∼

{∫ T

0
dt

∫

C(t)
κ2 d`

}1/2
.

Hence, (18) is a discrete version of the fact that the total energy remains bounded if the
curvature is bounded in L2-norm.
(ii) The result (18) is still valid in the case γ0 = 0. If there is no surface tension, the total
energy remains bounded.

Remark 4.5 Proposition 4.3 is valid also in the case of the slip boundary conditions
(8). Then we impose the condition (vh · n)(P ) = 0 at nodes on Γ for the function vh in
Vh. When Ω is a circle, the Korn inequality does not hold. In this case we have to impose
another condition to Vh such that Vh is orthogonal to the rigid movement. For the details
we refer to [4].
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5 Numerical results

W1
0

W2
0

AH0,0L BH1,0L

CH1,2LDH0,2L

Figure 1: Statement of the problem and a mesh T1/16.

We show numerical results of rising bubble problems. Let Ω ≡ (0, 1) × (0, 2) and
T = 10. We set

χ0(s) =
(1
2

+
1
5

cos 2πs,
2
5

+
1
5

sin 2πs
)
.

The initial domains Ω0
1 and Ω0

2 are shown in Fig. 1. We take the following values,

(ρ1, µ1) = (0.1, 1), (ρ2, µ2) = (100, 2)

and the initial velocity and the gravity,

u0 = (0, 0)T , f = (0,−1)T .

Non-slip boundary conditions (4) are imposed. We use three meshes, T1/16,T1/32, and
T1/64. In T1/n the sides AB and CD are divided into n equal segments, and the other sides
are divided into 2n. The total element numbers are 1,138, 4,580, and 18,444, respectively.
In Fig. 1 mesh T1/16 is shown. We use a simple notation K(Ch) defined by

K(Ch) = ||χh||`2(H2
0,h(Ch)).

5.1 The comparison of Schemes I and II

We compare the stability property of Schemes I and II. When σ0 = 0, both schemes are
identical and unconditionally energy-stable by Proposition 4.3, i.e., for any ∆t > 0

max
{∫

Ω
ρn

h|un
h|2dx ; n = 0, · · · , NT

}
≤ M0,
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Figure 2: Interfaces at t = 0, 2, · · · , 10 for ∆t = 1/8 by Scheme II (left), and for ∆t = 1/16
by Scheme I (center) and by Scheme II (right). σ0 = 1.

where M0 is a positive constant. In the case of σ0 > 0 we see Scheme II is more stable
than Scheme I. Letting σ0 = 1.0, we solve the problem on mesh T1/32. We set ∆t = 1/8.
In Scheme I the computed interface becomes serrate and the value ||χn

h||H2
0,h(Ch) grows up.

We cannot simulate the phenomenon. In Scheme II we can obtain the solution depicted
in Fig. 2, where interface curves are shown at t = 0, 2, 4, 6, 8, 10. K(Ch) is equal to 49.8.
When ∆t = 1/16 we can get the solutions for both schemes. Small jags are found in the
interface curves obtained by Scheme I at t = 6, 8, 10. K(Ch) is equal to 88.16 and 45.52
for Schemes I and II, respectively. Since Scheme II is more stable than Scheme I, we use
Scheme II hereafter.

5.2 The dependence on the subdivition

Setting σ0 = 1, we compare numerical results obtained from meshes T1/16, T1/32, and
T1/64. Time increment ∆t is chosen to be 1/8, 1/16, and 1/32, respectively. The results
are shown in Fig. 3. From these figures Hypothesis 4.1 seems to be satisfied. K(Ch) are
equal to 34.09, 45.88 and 55.66, respectively.

5.3 The effect of the coefficient of surface tension

We use mesh T1/32 and set ∆t = 1/32. We take σ0 = 0.0, 0.1, 1.0, 2.0. Their interface
curves are shown in Figs. 4 and Fig. 3 (σ0 = 1). As σ0 becomes larger, the shape of
the interface becomes more round because of larger surface tension. Fig. 5 shows the
elevations of the pressure at t = 5.0. In these figures the front side is CD. When σ0

becomes large, the pressure in Ω1 increases. In these four cases K(Ch) are equal to 80.21,
58.57, 45.88 and 43.00.
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Figure 3: Interfaces at t = 0, 2, · · · , 10 solved on T1/16 (left), T1/32 (center), and T1/64

(right). σ0 = 1.

5.4 The effect of boundary conditions

We consider problems of non-slip and slip boundary conditions. We use mesh T1/32 and
set ∆t = 1/32, and σ0 = 1.0. Figs. 6 and Fig. 7 show the interfaces and the streamlines.
The intervals of streamlines are same for both figures. In the case of the slip boundary
conditions the flow pattern is larger and the bubble goes up faster, which induces the lower
pressure in the rear and the hollow in the lower part of the interface. The values K(Ch) is
equal to 46.44 in the slip boundary condition case.

6 Concluding remarks

We have developed finite element schemes for two-fluid flow problems with surface tension
based on energy-stable approximation and analysed the stability. In the case of no surface
tension, the schemes are stable in the energy sense. When surface tension occurs, we have
shown a numerical criteion for the schemes to be stable in the energy sense. We have
examined the criterion in bubble rising problems. These are robust and mathematically
sound schemes.
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Figure 4: Interfaces at t = 0, 2, · · · , 10, σ0 = 0 (left), σ0 = 0.1 (center), and σ0 = 2 (right).
σ0 = 1.

Figure 5: Elevations of the pressure at t = 5.0. σ0 = 0.0 (left), 1.0 (center), 2.0 (right).

11



Figure 6: Interfaces and streamlines at t = 2, 4, · · · , 10 subject to the non-slip boundary
conditions.

Figure 7: Interfaces and streamlines at t = 2, 4, · · · , 10 subject to the slip boundary
conditions.
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Darboux evaluations of algebraic Gauss hypergeometric functions

MHF2006-16 Masato KIMURA & Isao WAKANO
New mathematical approach to the energy release rate in crack extension

MHF2006-17 Toru KOMATSU
Arithmetic of the splitting field of Alexander polynomial

MHF2006-18 Hiroki MASUDA
Likelihood estimation of stable Lévy processes from discrete data
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