2010.7.23 第12回早稲田大学 「流体数学セミナー」

界面張力により駆動される液滴の自発運動

千葉大学大学院理学研究科 / JST さきがけ

北畑 裕之

e-mail: kitahata@physics.s.chiba-u.ac.jp

自己紹介

- 1997 京都大学理学部(物理教室)
- 2001 京都大学大学院理学研究科(物理教室)
- 2004 京都大学大学院理学研究科 助手•助教
- 2008 千葉大学大学院理学研究科 講師(生命·情報物理研究室)

研究内容

化学振動反応、パターン形成、(ソフトマター物理)

表面張力(界面張力)とは?

Wikipediaより

表面張力(ひょうめんちょうりょく、surface tension)は、表面を出 来るだけ小さくしようとする傾向を持つ液体の性質、またその力 のことで、界面張力の一種である。

界面張力は様々な面で重要である

生命現象において

etc.

工学、産業面において

-化粧品 -表面加工 -熱輸送、物質輸送 etc.

平衡系での表面張力(界面張力)

表面張力の起源

2分子間に引力相互作用 (van der Waalsカのようなもの) が働くとする

最近接分子と1分子あたり-εだけの相互作用エネルギーがあるとする

バルク中での最近接分子数:z

- 一分子あたりの自由エネルギー: -zε/2
- \bigcirc 一分子あたりの自由エネルギー: $-z\epsilon \equiv \mu$

表面近くにある分子の数(N_s)は表面積(S)に比例する

トータルの自由エネルギー: $G = N\mu - \mu N_s/2 \equiv N\mu + \gamma S$

Young-Laplaceの式

接触角に関する関係式

接触点における力のつり合いの式 全エネルギーを最小にする変分原理から導出可能

Laplace **王**

界面が曲率をもつとき圧力にとびが生まれる

より一般的には

$$p_{in} - p_{out} = \gamma \left(\frac{1}{R_1} + \frac{1}{R_2} \right)$$
 R_1, R_2 は主曲率半径

非平衡系での表面張力(界面張力) Marangoni効果:濃度勾配と対流の結合

NATURE

July 16, 1960 VOL. 187

THE MARANGONI EFFECTS

By L. E. SCRIVEN* and C. V. STERNLING

Chemical Engineering Department, Shell Development Co., Emeryville, California

WITH the name of the Italian physicist Carlo Marangoni of Pavia and Florence (1840-1925) have been associated two distinct although related surface effects. The first of these is movement in a fluid interface. The motion is caused by local variations of interfacial tension that are caused in turn by differences in <u>composition</u> or <u>temperature</u>. The

Marangoni効果

Marangoni effect:

i) Thermal Marangoni effect(熱マランゴニ効果)

$$\Delta T \longrightarrow \Delta \gamma \longrightarrow \text{convection}$$

(高温で表面張力は下がる)
Marangoni number: $M_{aT} = \frac{\partial \gamma}{\partial T} \frac{\Delta TL}{\eta \alpha}$

ii) Solutal Marangoni effect(溶質マランゴニ効果)

$$\Delta c$$
 \longrightarrow $\Delta \gamma$ \implies convection
(高濃度で表面張力は下がる)
Marangoni number: $M_{ac} = \frac{\partial \gamma}{\partial c} \frac{\Delta cL}{nD}$

Marangoni対流

(H. Linde *et al.*, "Dynamics and Instability of Fluid Interfaces", ed. by T. S. Sφrensen, Springer-Verlag, 1979)

界面張力勾配による自発的運動

- ワインの涙
- 水面での樟脳粒の自発的運動

Active matter

- 水・油・界面活性剤系での油滴の自発的運動
- 水・アルコール系の液滴の運動
- BZ反応液滴の自発的運動

濃度差が界面張力勾配を生み出し、自発的に運動する

ワインの涙

XLII. On certain curious Motions observable at the Surfaces of Wine and other Alcoholic Liquors. By JAMES THOMSON, A.M., C.E., Belfast*.

J. Thomson, Phil. Mag., 10, 330- 33 (1855).

30倍速 (住野氏(東大)提供)

樟脳粒の自発的運動

樟脳膜の展開と昇華により生成される表面張力勾配

(S. Nakata et al., Langmuir, 1997)

回転運動

並進運動

1 cm

水・アルコール系での液滴の運動

体積 < 0.1 µl.

体積~10 µl.

体積~400 µl.

(K. Nagai et al., Phys. Rev. E, 2005.)

水・油・界面活性剤系での油滴の自発的運動

(STAC)

ガラス基板上で油滴が不規則な運動を示す

Y. Sumino et al., PRL (2005).Y. Sumino et al., PRE (2005).

5mm

擬一次元的な基板上で は往復運動を呈する

境界条件を変化させるだ けで、運動を制御できる

(Y. Sumino *et al., Phys. Rev. Lett.,* 2005.) (Y. Sumino *et al., Phys. Rev. E,* 2005.)

1/2 of real speed

BZ反応液滴の自発的運動

BZ反応とは?

静置時 a) Target Pattern

攪拌時

b) Spiral Pattern

(4倍速)

BZ反応の自発的運動

オレイン酸に浮かべたBZ反応液滴が反応とカップルして自発的に動く

化学波が右端に達したときに 動き始める

化学波が左端に達して、液滴 全体が酸化状態(青)になった 時反対に動き始める

(H. Kitahata et al., J. Phys. Chem., 2002.)

BZ反応と界面張力

(K. Yoshikawa et al., Chem. Phys. Lett., 1993)

酸化状態(青)のほうが還元状態(赤)より界面張力が大きい

Wilhelmy method

1 mm

液滴の界面の界面張力に勾配ができる。

この界面張力の勾配からどのようにして運動が生み出されるのか?

界面張力に勾配があるような液滴の自発的運動

- •できれば普遍的な議論をしたい
- ・解析的に扱える形での議論
- ・球形の液滴が別の相の中にあると仮定
- 定常Stokes流として考える。

BZ反応液滴の運動の場合:

サイズ ~1 mm 速度 ~0.1 mm/s 動粘性係数 ~1 mm²/s

レイノルズ数 ~0.1

- 流れは十分に遅く、表面張力差の変化 oil に無限に速く追随すると仮定。

界面活性剤を分解する ことにより界面張力の差を 作り出す。

液滴のサイズは数十μm

Self-Propelled Oil Droplets Consuming "Fuel" Surfactant

Taro Toyota,^{†,‡} Naoto Maru,[†] Martin M. Hanczyc,[§] Takashi Ikegami,^{II} and Tadashi Sugawara^{*,†}

JACS, 131, 5013 (2009).

- 液滴は球形を保つとする
- ・界面張力プロファイルは θにのみ依存
- 流速のプロファイルも軸対称

・無限遠で
$$\mathbf{v} \rightarrow -\mathbf{u} = -u \mathbf{e}_{z}$$

$$\cdot r = R \mathfrak{C} \quad v_r = 0$$

•r = Rで v_{θ} が内側と外側で連続

の条件を満たす一般解を求める。

流れ関数
$$\psi \in V_r = -\frac{1}{r^2 \sin \theta} \frac{\partial \psi}{\partial \theta}$$

 $V_{\theta} = \frac{1}{r \sin \theta} \frac{\partial \psi}{\partial r}$ と定義。
 $\nabla \times (\nabla \times (\nabla \times \mathbf{v})) = -\frac{1}{r \sin \theta} \hat{E} \hat{E} \psi = 0$ より、
 $\hat{E} \hat{E} \psi = 0$ を解けばよい。
 $\hat{E} = \frac{\partial^2}{\partial r^2} + \frac{\sin \theta}{r^2} \frac{\partial}{\partial \theta} \frac{1}{\sin \theta} \frac{\partial}{\partial \theta}$
-般解:

$$\psi = \sum_{n=2}^{\infty} \left(\frac{A_n}{10} r^{n+2} - \frac{B_n}{2} r^{-n+3} + C_n r^n + D_n^{-n+1} \right) 2G_n^{-1/2} (\cos \theta)$$

境界条件を満たす一般解は

$$\mathbf{v}_{r}^{(i)}(\mathbf{r},\theta) = \left(\frac{\mathbf{B}_{2}^{(o)}}{\mathbf{R}^{3}} - \frac{3\mathbf{u}}{2\mathbf{R}^{2}}\right)(\mathbf{r}^{2} - \mathbf{R}^{2})\mathbf{P}_{1}(\cos\theta) + \sum_{n=3}^{\infty}\frac{\mathbf{B}_{n}^{(o)}}{\mathbf{R}^{2n-1}}(\mathbf{r}^{n} - \mathbf{R}^{2}\mathbf{r}^{n-2})\mathbf{P}_{n-1}(\cos\theta)$$

$$\mathbf{v}_{r}^{(0)}(\mathbf{r},\theta) = \left(B_{2}^{(0)}\left(\frac{1}{\mathbf{r}} - \frac{\mathbf{R}^{2}}{\mathbf{r}^{3}}\right) - u\left(1 - \frac{\mathbf{R}^{3}}{\mathbf{r}^{3}}\right)\right) P_{1}(\cos\theta) + \sum_{n=3}^{\infty} B_{n}^{(0)}\left(\frac{1}{\mathbf{r}^{n-1}} - \frac{\mathbf{R}^{2}}{\mathbf{r}^{n+2}}\right) P_{n-1}(\cos\theta)$$

$$\mathbf{v}_{\theta}^{(i)}(\mathbf{r},\theta) = -\left(\frac{B_{2}^{(o)}}{R^{3}} - \frac{3u}{2R^{2}}\right)\left(2\mathbf{r}^{2} - R^{2}\right)\frac{2G_{2}^{-1/2}(\cos\theta)}{\sin\theta} - \sum_{n=3}^{\infty}\frac{B_{n}^{(o)}}{R^{2n-1}}\left((n+2)\mathbf{r}^{n} - nR^{2}\mathbf{r}^{n-2}\right)\frac{G_{n}^{-1/2}(\cos\theta)}{\sin\theta}$$

$$\mathbf{v}_{\theta}^{(0)}(\mathbf{r},\theta) = \left(-B_{2}^{(0)}\left(\frac{1}{\mathbf{r}} + \frac{\mathbf{R}^{2}}{\mathbf{r}^{3}}\right) + \mathbf{u}\left(2 + \frac{\mathbf{R}^{3}}{\mathbf{r}^{3}}\right)\right) \frac{G_{2}^{-1/2}(\cos\theta)}{\sin\theta} + \sum_{n=3}^{\infty} B_{n}^{(0)}\left(\frac{n-3}{\mathbf{r}^{n-1}} - \frac{(n-1)\mathbf{R}^{2}}{\mathbf{r}^{n+1}}\right) \frac{G_{n}^{-1/2}(\cos\theta)}{\sin\theta}$$

(cf. N. O. Young et al., J. Fluid Mech., 1959, M. D. Levan, J. Colloid. Interface Sci., 1981)

r = *R*での界面張力を考慮した境界条件

$$\sigma_{r\theta}^{(i)}\Big|_{r=R} = \sigma_{r\theta}^{(o)}\Big|_{r=R} + \frac{1}{R}\frac{\partial\gamma}{\partial\theta}$$

液滴の静止系でみると、液滴にかかる力の和は0 でなければならない("force-free condition")

液滴にかかる力 f は
$$\mathbf{f} = \int \mathbf{n} \cdot \sigma^{(o)} d\mathbf{S} \bigg| = -4\pi \eta^{(o)} B_2^{(o)} \mathbf{e}_z$$
とかけるので、
$$\mathbf{f} = 0 \quad \text{より} \quad B_2^{(o)} = 0$$

境界での界面張力のプロファイル γ(θ) を

$$\gamma(\theta) = \sum_{n=0}^{\infty} \Gamma_n P_n(\cos\theta)$$

のようにLegendre展開すると

$$B_{2}^{(o)} = 0 = \frac{1}{\eta^{(i)} + \eta^{(o)}} \left[\frac{1}{3} R\Gamma_{1} + uR \left(\eta^{(o)} + \frac{3}{2} \eta^{(i)} \right) \right]$$
$$B_{n}^{(o)} = \frac{1}{\eta^{(i)} + \eta^{(o)}} \frac{n(n-1)}{2(2n-1)} R^{n-1} \Gamma_{n-1} \qquad (n \ge 3)$$
$$u = -\frac{2}{3(3\eta^{(i)} + 2\eta^{(o)})} \Gamma_{1}$$
と係数が決まり、流速のプロファイルがすべて決まる。

この結果をBZ反応の液滴に適用する

BZ反応のモデル: Oregonator

$$\frac{\partial U}{\partial t} + \mathbf{v} \cdot \nabla U = f(U, V) + D_U \nabla^2 U$$

$$\frac{\partial V}{\partial t} + \mathbf{v} \cdot \nabla V = g(U, V) + D_V \nabla^2 V$$

$$f(U, V) = \frac{1}{\varepsilon} \left(U(1 - U) - fV \frac{U - q}{U + q} \right)$$

$$g(U, V) = U - V$$

$$U : [HBrO_2]$$

$$V : [Fe(phen)_3^{3+}]$$

$$\varepsilon = 0.05$$

$$f = 2.5$$

$$q = 0.001$$

(参考)

ターゲットパターン

スパイラルパターン

界面張力と濃度の関係

 $\gamma = \gamma_0 + kV$

(Yoshikawa et al, CPL, 1993)

計算手法

★ 軸対称は常に仮定する。

① Oregonatorにより、球内のプロファイルを計算

- 球内でのプロファイルを計算する。
- ⑤で計算された移流項を代入。
- ② 境界でのVの値から $\gamma(\theta)$ が得られる。(比例定数k)
- ③ γ(θ)からΓ_nを計算(n = 8まで)
- (4) Γ_1 から、液滴の運動速度が求まる。
- ⑤ Γ_nから、液滴内外の流速場が求まる。

数値計算結果

U

V (触媒濃度(=色)に対応)

プロファイルの時間変化

流れ場(液滴内外共;実験室系で)

流れ関数 ψ (等高線が流線)

流れ関数と流れ場

Γ_nの時間変化

実験との比較

Order Estimation

粘性
$$\eta^{(i)} \sim 10^{-3} \text{ kg m}^{-1} \text{ s}^{-1}$$

 $\eta^{(o)} \sim 10^{-2} \text{ kg m}^{-1} \text{ s}^{-1}$

$$|\mathbf{u}|[\text{m/s}] = \frac{2}{3\{3\eta^{(i)} + 2\eta^{(o)}\}} |\Gamma_1| \sim \frac{2}{6} \times 10^2 |\Gamma_1| \sim 30 |\Gamma_1|[\text{N/m}]$$

謝 辞

吉川 研一 教授 (京都大学) 中田 聡 教授 (広島大学) 長山 雅晴 教授 (金沢大学) 櫻井 建成 准教授 (千葉大学) 馬籠 信之 博士 (京都大学) 相原 良一 博士 (理化学研究所) 一野 天利 博士 (近畿大学) 義永 那津人 博士 (東京大学) 住野 豊 博士 (東京大学) 永井 健 博士 (お茶の水女子大学)