
Syllabus 
 
1.  Pattern formations in fluids and computer assisted analysis. 

（Takaaki Nishida） 
1.1 Examples of pattern formations in fluids.  
1.2 Bifurcation theories.  
1.3 Applications of bifurcation theorems. 
1.4 Computer assisted analysis.  
1.5 Computer assisted analysis in mathematical fluid mechanics. 
 
Course Description 
Pattern formations from the equilibrium state in fluid motions may be treated by 

the bifurcation theories. Bifurcation theorems can be applied to explain Taylor 
vortices of Taylor problems and hexagonal cells of heat  convection problems as the 
first bifurcation. Computer assisted analyses become necesssary to see global 
bifurcation structures.  Examples of computer assisted proofs and anlyses are 
explained for some heat convection problems.  
 
 
2.  Introduction to the theory of stochastic  differential equations and 

stochastic partial differential equations. 

(Tadahisa Funaki) 
2.1. Some basic concepts in probability theory. 
2.2. Brownian motion. 
2.3. Stochastic integrals and Ito's formula. 
2.4. Stochastic differential equations. 
2.5. Stochastic partial differential equations. 
 
Course Description 
After briefly summarizing in Section 1 the basic concepts and facts in probability 

theory such as probability spaces, random  variables, their convergences, 
independence, the central limit theorem  and Gaussian distributions, the 
Brownian motion will be introduced in Section 2.  The stochastic integrals are 
essential to discuss stochastic (partial) differential equations and Ito's formula 
plays a central role in the calculus related to them.  After these preparations, 
the stochastic differential equations and the stochastic partial  differential 



equations will be discussed in Sections 4 and 5, respectively. If time permits, as an 
example of the stochastic partial differential equation, I will talk about the 
singular limit for stochastic reaction diffusion equations. 
 
 
3. L

r

 Helmholtz decomposition and its application to the Navier-Stokes equations. 

 (Hideo Kozono） 
3.1 Helmholtz-Weyl dcomposition in Lr.  
3.2 Lr-variational inequality. 
3.3 Stationary Navier-Stokes equations under the general flux condition.  
3.4 Global Div—Curl lemma. 
3.5 General compensated compactness theorem. 
 
Course Description 
 We show that every L

r
 -vector field on D can be uniquely decomposed into two spaces 

with scalar and vector potentials and the harmonic vector space via rot and div, where D 
is a bounded domain in R3. This may be regarded as generalization of de Rham—Hodge 
decomposition for smooth k-forms on compact Riemannian manifolds. Our result holds 

not only smooth but also general L
r
 vector fields. Basically, construction of harmonic 

vector fields is established by means of the theory of elliptic PDE system of boundary 

value problems due to Agmon—Douglis—Nirenberg. Since we deal with L
r
 —vector 

fields, such a general theory is not directly available.  To get around this difficulty, we 
make use of certain variational inequalities associated with the quadtatic forms defined 
by rot and div. various kinds of boundary conditions which are compatible to rot and div 
and which determine the harmonic parts are fully discussed.  
  As applications, we first consider the stationary problem of the Navier—Stokes 
equations in multi-connected domains under the inhomogeneous boundary 
condition. Up to the present, it is na open question whether there exists a solution if 
the given boundary data satisfies the general flux condition. It will be clarified that 
if the harmonic extension of the boundary data into D is small in L3(D) compared 
with the viscosity constant, then there is at least one weak solution.  
 The second application is on the global Div—Curl lemma. The classical Div—Curl 
lemma is stated in such a way that the convergence holds in the sense of 
distributions. Under the boundary condition determining the harmonic vector fields  
In the L

r
 —Helmholtz—Weyl decomposition in D, we show that the convergence to holds 

in the whole domain D.  Furthermore, we give a more general compensated 



compacteness theorem in the Hilbert space associated with the global Div—Curl 
lemma. 
 
4. Real interpolation and endpoint estimates for the Stokes semigroup.  

(Masao Yamazaki) 
4.1 Definition, fundamental property and concrete examples of real interpolation. 
4.2 Dual spaces and real interpolation. 
4.3 The L

q
 — L

r
 estimates for the Stokes semigroup.  

4.4 Endpoint estimates for the Stokes semigroup. 
4.5 Application to the Navier-Stokes equations. 
 
Course Description 
The purpose of this course is to derive useful estimates for the Stokes semigroup by 

using real interpolation, which is one of real analytic tools indispenable in recent 
detailed analysis for the Navier-Stokes equations,  We start with the definition and 
fundamental property of real interpolation, together with the Besov spaces and the 
Lorentz spaces as concrete examples.  We next investigate the relationship 
between real interpolation  and duality, which is one of the main methods in this 
lecture.  Then we proceed to the L

q
 — L

r
  estimates of the Stokes semigrop, an 

important tool in the analysis of the Navier-Stokes equations, and verify that the 
methods above can be applied also to the Lorentz spaces and yield precise estimates.  
We finally study of the application of these estimates to some concrete nonlinear 
problems. 
 


