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( Pattern formations in fluids and computer assisted analysis)
(Y . FEHE)
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(Examples of pattern formations in fluids)
1.2 Jy e B O R

( Bifurcation theories)
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(Applications of bifurcation theorems)
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(Computer assisted analysis)

1.5 FHEHER FIfiRtr OB

( Computer assisted analysis in mathematical fluid mechanics )
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Pattern formations from the equilibrium state in fluid motions may be treated by
the bifurcation theories. Bifurcation theorems can be applied to explain Taylor
vortices of Taylor problems and hexagonal cells of heat convection problems as the
first bifurcation. Computer assisted analyses become necesssary to see global
bifurcation structures. Examples of computer assisted proofs and anlyses are

explained for some heat convection problems.
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(Introduction to the theory of stochastic differential equations and stochastic
partial differential equations)
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2.1. WE=RGm O ) 72

(Some basic concepts in probability theory)
2.2. 7T U EH)

(Brownian motion)

2.3. WeFEsy L PO AN

(Stochastic integrals and Ito's formula)

2.4. HERM TN

(Stochastic differential equations)

2.5. fle=={R sy i

(Stochastic partial differential equations)
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After briefly summarizing in Section 1 the basic concepts and facts in probability
theory such as probability spaces, random  variables, their convergences,
independence, the central limit theorem  and Gaussian distributions, the
Brownian motion will be introduced in Section 2. The stochastic integrals are
essential to discuss stochastic (partial) differential equations and Ito's formula
plays a central role in the calculus related to them. After these preparations,
the stochastic differential equations and the stochastic partial differential
equations will be discussed in Sections 4 and 5, respectively. If time permits, as an
example of the stochastic partial differential equation, I will talk about the

singular limit for stochastic reaction diffusion equations.
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(L' Helmholtz decomposition and its application to the Navier-Stokes equations)
(240 NETERE CGRAE KBRS AAF SRR )
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(Helmholtz-Weyl dcomposition in Lr)

3.2 L' 5y sk

(Lr-variational inequality)
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(Stationary Navier-Stokes equations under the general flux condition)
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(Global Div—Curl lemma)
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(General compensated compactness theorem)
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We show that every L -vector field on D can be uniquely decomposed into two spaces



with scalar and vector potentials and the harmonic vector space via rot and div, where D
is a bounded domain in R3. This may be regarded as generalization of de Rham—Hodge
decomposition for smooth k-forms on compact Riemannian manifolds. Our result holds

not only smooth but also general L' vector fields. Basically, construction of harmonic

vector fields is established by means of the theory of elliptic PDE system of boundary
value problems due to Agmon—Douglis—Nirenberg. Since we deal with L' —vector
fields, such a general theory is not directly available. To get around this difficulty, we
make use of certain variational inequalities associated with the quadtatic forms defined
by rot and div. various kinds of boundary conditions which are compatible to rot and div
and which determine the harmonic parts are fully discussed.

As applications, we first consider the stationary problem of the Navier—Stokes
equations in multi-connected domains under the inhomogeneous boundary
condition. Up to the present, it is na open question whether there exists a solution if
the given boundary data satisfies the general flux condition. It will be clarified that
if the harmonic extension of the boundary data into D is small in L3(D) compared
with the viscosity constant, then there is at least one weak solution.

The second application is on the global Div—Curl lemma. The classical Div—Curl
lemma is stated in such a way that the convergence holds in the sense of
distributions. Under the boundary condition determining the harmonic vector fields
In the L' —Helmholtz—Weyl decomposition in D, we show that the convergence to holds
in the whole domain D. Furthermore, we give a more general compensated
compacteness theorem in the Hilbert space associated with the global Div—Curl

lemma.
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(Real interpolation and endpoint estimates for the Stokes semigroup )
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4.1 EfiMOER., EARIMEE & BRG]

(Definition, fundamental property and concrete examples of real interpolation)
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(Dual spaces and real interpolation)
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(The L' — L' estimates for the Stokes semigroup)
4.4. Stokes F-HEIZKT % endpoint estimate

(Endpoint estimates for the Stokes semigroup)
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(Application to the Navier-Stokes equations)
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The purpose of this course is to derive useful estimates for the Stokes semigroup by
using real interpolation, which is one of real analytic tools indispenable in recent
detailed analysis for the Navier-Stokes equations, We start with the definition and
fundamental property of real interpolation, together with the Besov spaces and the
Lorentz spaces as concrete examples. We next investigate the relationship
between real interpolation and duality, which is one of the main methods in this
lecture. Then we proceed to the L' — L' estimates of the Stokes semigrop, an
important tool in the analysis of the Navier-Stokes equations, and verify that the
methods above can be applied also to the Lorentz spaces and yield precise estimates.
We finally study of the application of these estimates to some concrete nonlinear

problems.



